5-3 Indefinite Integral or general anti-derivative

$$\int f(x) dx = all possible functions whose derivative is $f(x)$.$$

$$\int 2 dx = ah \text{ functions whose devivative is } = 2,$$

$$= 2x + (2)^{2}$$

$$= 2x + C \quad \text{(where } C = \text{constant)}$$

$$\frac{1}{1+x^3} dx = + on'(x) + C$$

Ex
$$\int 3x + 1 dx = \int 3x dx + \int 1 dx$$

| Cas | $\frac{1}{3}(x^2) = \frac{1}{2} \cdot 2x = 4$

| Property | = $3 \cdot x^2 + C_1 + x + C_2$

= $3x^2 + x + C$

= $3x^2 + x + C$

Ex
$$\int \frac{1}{7 \cdot \cos(x) dx} = \frac{1}{3} \cdot \sin(x) + C \int \left(\frac{1}{3} (x) + \frac{1}{3} (x) dx + \frac{1}{3} (x) dx \right) dx = \int \frac{1}{3} (x) dx + C \int \frac{1}{3}$$

Fower Rul
$$\int_{-\infty}^{\infty} x^{n} dx = \frac{x^{n+1}}{x^{n+1}} + C \left(n = constant, n \neq -1 \right)$$

kick the exponent up by one, then divide by it.

$$\int x^3 dx = x^4 \times C$$

------Basiz Integrals Chart

Function	Ant-devivative	Function	Anti-denvatue
xn (n+-1)	<u>×</u> n+1	1 + x2	+an'(x)
×	la ×		
ex	e^{\star}	1 1 - Xs	SIn (X)
Sin(X)	- cos (X)		8e (¯ `(⊁)
cos(X)	sin(x)	1×11 ×2-1	800 (7)
sec(x)+an(x)	Se ((×)		
&C2(X)	tan(x)		
			I

$$\int \sqrt{\chi^{3}} + \chi d\chi$$

$$\int (\chi^{3})^{\frac{1}{2}} + \chi d\chi$$

$$\int \chi^{\frac{1}{2}} + \chi$$

Fundamental theorem of Calculus (Part I)

$$\int d(x) dx = a \quad \text{function}$$

$$\int_{a}^{b} f(x) dx = a \quad \text{number} = \text{ area} \quad \text{under} \quad \text{graph} \quad \text{g} \quad \text{g} = f(x)$$

$$= F(b) - F(a) \quad \text{w/} \quad \text{f} = \text{ some} \quad \text{anti-derivative}$$

$$\text{sol} \quad \text{g}(x)$$

$\underline{\text{integrate } f(x), \text{ then plug in b, plug in a, subtract}}$

$$\underbrace{\text{Ex}}_{-3} \int_{-3}^{5} x^{3} + 5x \, dx = \underbrace{\frac{x^{4}}{4} + \frac{5x^{3}}{3}}_{-3}^{5} = \underbrace{\frac{5^{4}}{4} + \frac{5(5)^{2}}{3}}_{-3} - \left(\frac{-13)^{4}}{4} + \frac{5(-3)^{4}}{3}\right) = 176$$