$$
\begin{aligned}
& \text { Find the indicated antiderivative. } \\
& \text { 1. } \int \frac{3 x^{2}}{\sqrt{x^{3}-1}} d x=\int \frac{d u}{\sqrt{u}}=\int u^{-1 / 2} d u=2 u^{1 / 2}+c \\
& u=x^{3}-1=2 \sqrt{x^{3}-1}+c
\end{aligned}
$$

$$
d u=3 x^{2} d x
$$

2. $\int \frac{e^{\cot (x)} \csc (x)}{\sin (x)} d x=\int e^{u} d u$
$n=\cot x \longleftrightarrow$ related $\tan x$

$$
\frac{d u}{d x}=-\csc ^{2} x
$$

$$
\downarrow d / d x
$$

$$
\sec ^{2} x
$$

$$
\begin{aligned}
\frac{d}{d x}\left(-e^{\cot x}\right) & =-e^{\cot (x)} \cdot\left(-\csc ^{2} x\right) \\
& =e^{\cot (x)} \cdot \csc x \cdot \csc x \\
& =e^{\cot x} \cdot \csc x \cdot \frac{1}{\sin x} \\
& =-\int e^{u} d u=-e^{\cot (x)}+c
\end{aligned}
$$

$$
d u=-\csc ^{2} x d x
$$

$$
\frac{1}{-\csc ^{2} x} d u=d x
$$

$\stackrel{\operatorname{suh}}{=} \int \frac{e^{u} \csc (x)}{\sin (x)} \frac{-1}{\csc ^{2}(x)} d u=\int \frac{e^{u}(-1)}{\sin (x) \cdot \csc (x)} d u$

$$
\begin{align*}
& \frac{d}{d x}(\text { ans })= \\
& -2\left(\cos \left(x^{3}\right)\right) \cdot\left(-\sin \left(x^{3}\right) \cdot 3 x^{2}\right. \\
& =6 x^{2} \cos \left(x^{3}\right) \sin \left(x^{3}\right) \tag{10}
\end{align*}
$$

$$
-(\cos (u))^{2}+c
$$

$$
=-\left(\cos \left(x^{3}\right)\right)^{2}+c
$$

chen $\frac{d}{d x}(\tan)=2\left(\sin \left(x^{3}\right)\right)^{\prime} \cdot \cos \left(x^{3}\right) \cdot 3 x^{2}$ (1)

$$
\begin{aligned}
& \text { 3. } \int 6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right) d x=\int 6 x^{2} \sin (u) \cos (u) \frac{1}{3 x^{2}} d u=2 \int \sin (u) \cos (u) d u \\
& u=x^{3} \\
& d u=3 x^{2} \\
& d x \\
& d u=3 x^{2} d x \\
& \frac{1}{3 x^{2}} d u=d x \\
& \omega=\sin (u) \\
& d u=\cos (u) d u \\
& =\partial \int \omega d \omega=\frac{2 \omega^{2}}{2}+c \\
& =(\sin (u))^{2}+c \\
& =\left(\sin \left(x^{3}\right)\right)^{2}+c
\end{aligned}
$$

$$
\begin{aligned}
& \cot x \xrightarrow{d / d x}-\csc ^{2} x \\
& \text { set } \|^{\|} \\
& \text {5. } \int \cot ^{3} x \csc ^{2} x d x=\int u^{3} \csc ^{2} x\left(-\frac{1}{-\csc ^{2} x}\right) d u=-\int u^{3} d u \\
& u=\cot x \\
& \frac{d u}{d x}=-\csc ^{2} x \\
& d u=-\csc ^{2} x d x \\
& -\sin ^{2} x d u=\frac{1}{-\csc ^{2} x} d u=d x
\end{aligned}
$$

No dey 1 diffs no derive rel.
7. $\int \frac{x}{x+3} d x=$ No common try deriv.
when in doubt set $u=$ most complicated sub-expression

$$
\begin{aligned}
& u=x+3 \\
& d u=d x
\end{aligned}
$$

$$
\overline{\overline{s u b}} \int \frac{x}{u} d u=\int \frac{u-3}{u} d u=\int \frac{u}{u} d u-\int \frac{3}{u} d u
$$

stuck bic

$$
=\int 1 \cdot d u-\int \frac{3}{u} d u
$$

vanables mixed.
mine $u=x+3=u-3 \ln |u|+c$

$$
\Rightarrow \quad u-3=x \quad=x+3-3 \ln |x+3|+c
$$

check:

$$
\frac{d}{d x}(\text { ans })=1-3\left(\frac{1}{x+3}\right) \cdot 1=1-\frac{3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=\frac{x}{x+3}
$$

$$
\begin{aligned}
& \text { 4. } \int \frac{2 x+1}{x^{2}+1} d x=\int \frac{\partial x+1}{u}-\frac{1}{\partial x} d u=\int \frac{1+\frac{1}{\partial x}}{u} d u \\
& \begin{array}{c}
\text { mixed } \\
\text { var. }
\end{array} \Rightarrow \because \\
& u=x^{2}+1 \\
& d u=2 x d x \\
& \frac{1}{2 x} d u=d x \\
& \int \frac{1}{u} d u+
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } \int \tan ^{5} \overbrace{x}^{u^{5} d u} \overbrace{\sec 2}^{2} x= \\
& u=\tan x \\
& d \mu=\sec ^{2} x d x \\
& \frac{n^{6}}{6}+c=\frac{\tan (x)}{6}+c \\
& \text { chech } \\
& \frac{d}{d x}(\operatorname{arc}) \quad \frac{b}{6}(\tan x)^{5} \cdot \sec ^{2} x=\cdots \\
& \sin ^{2} x+\cos ^{2} x=1 \Longrightarrow \sin ^{2} x=1-\cos ^{2} x \\
& \int \underbrace{\left(1-\cos ^{2}(x)\right)} \cos (x) d x=\int \cos (x)-\cos ^{3}(x) d x \\
& =\int \sin ^{2}(x) \cdot \cos (x) d x \\
& \begin{array}{l}
u=\sin x \\
d u=\cos x d x=\int u^{2} d u=\frac{\sin x}{3}+c
\end{array}
\end{aligned}
$$

