4.6.2

$$f(x) = \frac{x-2}{x-7}$$

$$\int_{X=C}^{(x)} \frac{x-\lambda}{x-7}$$
Vertical asy: $y=C$

$$\lim_{X\to C} \int_{X\to C}^{(x)} \frac{x-\lambda}{x-1} = \lim_{X\to C} \int_{X\to C}^{(x)} \frac{y}{x-1} = \lim_{X\to C}^{(x)} \frac{y}{x-1$$

Definite inlegal warm-up

$$\int_{-1}^{5} \frac{4x^{3} + 6x}{3} + 6x \Big|_{-1}^{5} = \left(\frac{4(5)^{3}}{3} + 6 \cdot 5 \right) - \left(\frac{4(-1)^{3}}{3} + 6(-1) \right)$$

$$= \frac{500}{3} + 30 - \left(-\frac{4}{3} - 6 \right) = \frac{500}{3} + 30 + \frac{4}{3} + 6$$

$$= \frac{500}{3} + 30 - \left(-\frac{4}{3} - 6 \right) = \frac{500}{3} + 30 + \frac{4}{3} + 6$$

$$= \frac{500}{3} + 30 - \left(-\frac{4}{3} - 6 \right) = \frac{500}{3} + 30 + \frac{4}{3} + 6$$

$$= \frac{500}{3} + 30 - \left(-\frac{4}{3} - 6 \right) = \frac{500}{3} + 30 + \frac{4}{3} + 6$$

$$= \frac{500}{3} + 30 - \frac{4}{3} + \frac{6}{3} +$$

Consider

1, where on the chart does this match?

yes,
$$x^{4}$$
n, but not EXACTLY

yes, x^{4} n, but not EXACTLY

$$\begin{cases}
9x^{3} + 6x + 1 & 4x \\
9x^{3} + 6x & 4x + 6
\end{cases}$$

$$\begin{cases}
9x^{3} + 6x + 6
\end{cases}$$

$$\begin{cases}
4x^{3} + 6x + 6
\end{cases}$$

Key! nothing special about "x"

needs Sanda = until transform publican

() set [N = 3x + 1]

(a) = dx (3x+1) (a) [3du = dx

du = 3

(at) infinites ind

charge variable

Basic Integrals Chart

	Function	Anti-devivat
	x" (u+-1)	N+ ×n+
	Ϋ́	Jr.1×1
/	e^*	e*
	Sin(X)	- cos (×)
	cos(*)	sin(x)
\	sec(x)+an(x)	Se c (+)
	& C3(X)	tan(x)

Function	
+ × g-	
1 1 - **	
1×1√ ×2-1	

$$\int_{N}^{\infty} \sqrt{y} = \frac{y}{x_{n+1}} + C$$

$$\int (x)^{3} \frac{1}{3} dx = \frac{1}{3} \int u^{3} du = \frac{1}{3} \cdot \left(\frac{3x+1}{3} \right) + c$$

$$(3x+1) + c$$

$$= \frac{1}{3} \cdot \left(\frac{3x+1}{3} \right) + c$$

$$\int (5 \times -1)^{7} dx$$

$$\int (5$$