9. $f'(x) = (x^2 - 1)/x$, $f(1) = \frac{1}{2}$ eq. speed position @ time = 1

couple my $\int \Rightarrow full$ description of position

10. $f''(x) = 4-6x-40x^3$, f'(0) = 1, f(0) = 2eq. acceleration velocity position

(a) one

(b) one

(c) one

(n) tent

(

> complete description of

 $f(x) = \int f'(x) dx = \int f'(x) = \int f'(x) dx$

 $f'(x) = \int 4 - 6x - 40x dx = 4x - 6x - 40x + 0$ $where f'(0) = 1 = 4.0 - 6.0^{2} - 4.0^{4} + 0 = 1$ $(0) = 1 = 4.0 - 6.0^{2} - 4.0^{4} + 0 = 1$ $(0) = 1 = 4.0 - 6.0^{2} - 4.0^{4} + 0 = 1$ $(0) = 1 = 4.0 - 6.0^{2} - 4.0^{4} + 0 = 1$

 $\frac{update}{b'(x)} = 4x - 3x^{3} - 10x^{4} + 1$

-b(x)=58(x)dx=(4x-3x3-10x4+1 dx

(dog = f(t) = ft'(t) dt

 $\int_{1}^{\infty} |x| = \int_{1}^{\infty} \frac{x^{2}-1}{x^{2}} dx = \int_{1}^{\infty} |x| + C$

 $\frac{1}{2} = \frac{1^{2} - \ln|1| + C}{2} = \frac{1}{2} - \frac{\ln|1| + C}{2}$

(3) $f(x) = \frac{1}{3} - \ln |x|$ there: $f'(x) = \frac{1}{3} - \ln |x| = \frac{1}{3}$ $f(1) = \frac{1}{3} - \ln |x| = \frac{1}{3}$

 $\frac{d}{dx}(\ln|x|) = \frac{1}{x} \ln(x) \quad x>0$ $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$ $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$ $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$

 $= 4x^{3} - 3x^{3} - 10x^{5} + x + b$ $= 4x^{3} - 3x^{3} - 10x^{5} + x + b$ $= 4x^{3} - 3x^{3} - 10x^{5} + x + b$ $= 5x^{3} - 10x^{$

fun dro-	Integral
JN du (n+-1)	h N+1
$\int \frac{1}{\sqrt{2}} dx$	Inlul
Scos (m) da	sin(h)
Ssinta du	- WS (h)
Sec ² (a) da	tan(u)
(seclu)tanln)du (en du	sec(u) eu

"what's inside" must match the differential

$$\int \frac{1}{1+u^2} du = tan'(u) du$$

$$\int \frac{1}{1-u^2} du = sin'(u) du$$

$$\int \frac{1}{1u|N|u^2-1} du = sec'(u) du$$

