warm-up:
Set up, in Desmos, an integral to calculate the area of an eclipsed circle.

$(x-h)^{2}+(y-k)^{2}=r^{2}$
solve for y

$$
\begin{aligned}
& (y-k)^{2}=r^{2}-(x-h)^{2} \\
& y= \pm \sqrt{r^{2}-(x-h)^{2}}+k
\end{aligned}
$$

+ branch gives b_{1} - branch gives b_{2}

$$
\int_{-2,4}^{2,4} \sqrt{1-(x-1)^{2}}+4-\sqrt{1-(x-2)^{2}}+3 d x
$$

Compute Area

story 2
Bounds of integration
Stop 3 Build Interval $x=0$ is lower bound
$x^{3}=8$ gives upper bound

$$
\Rightarrow x=2
$$

$$
\begin{aligned}
=8 x-\left.\frac{x^{4}}{4}\right|_{0} ^{2} & =8.2-\frac{16}{4}-\left[8.0-\frac{0^{4}}{4}\right] \\
& =16-4=12 \text { sa its units }
\end{aligned}
$$

ALT. STRATEGY

$$
x=0
$$

$$
y=x^{3}
$$

$$
f\left(x, x^{3}\right)
$$

width is the

$$
x \text {-cord, } \quad \sin _{3} 6
$$

$$
y=x^{3}
$$

solve for x :

$$
\sqrt[3]{y}=x
$$

(2) Bounds:

$$
\min _{11} y=\max _{0} \quad \begin{gathered}
11 \\
8
\end{gathered}
$$

(3)

$$
\begin{aligned}
\int_{0}^{8} \sqrt[3]{y} d y=\int_{0}^{8} y^{1 / 3} d x=\frac{3}{4} y^{4 / 3} 8 & =\frac{3}{4}(8)^{4 / 3}-0 \\
& =\frac{3}{4}\left[(8)^{1 / 3}\right]^{4} \\
& =\frac{3}{4}(2)^{4}=\frac{3}{4} \cdot 16=12
\end{aligned}
$$

Area Rectangs
(1) $\sqrt[3]{y} \cdot \Delta x$

$$
\text { height }=\Delta y
$$ the x-cooed

measures
risht/left the x-cove
measures
risht/left the x-cove
measures
risht/left dist.
Ken; (x, y)

Volume $=$ Sum of Smaller / Simpler Volumes
Revolve about y-axis $=$ solid of Revolution

Area disk by

$$
\pi r^{2} x_{y}=\pi(\sqrt[3]{y})^{2} \Delta y
$$

