Exam 4 Review

1. If a snowball melts so that its surface area decreases at a rate of 1 square centimeter per minute, find the rate at which the diameter decreases when the diameter is 10 centimaters.
2. Two sides of a triangle are 4 m and 5 m in length and the angle between them is increasing at a rate of 0.06 radians per second. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\pi / 3$.
3. Find an equation of the tangent line to the function the given point.
(a) $f(x)=e^{x / 10}, x=0$
(b) $f(x)=\sqrt{x}, x=16$
4. Use your work in \#3 find estimates
(a) $e^{0.1 / 10}, e^{.25 / 10}$
(b) $\sqrt{16.5}, \sqrt{17.5}$
5. A boat leaves a dock at 1:00 PM and travels due south at a speed of 20 kph . Another boat has been heading due east at 12 kph and reaches the same dock at 3:00 PM. At what time were the two boats closest together?
6. A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.
7. Evaluate the limit
(a)

$$
\lim _{x \rightarrow+\infty} \frac{(\ln x)^{2}}{x}
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{x+\sin x}{x+\cos x}
$$

(d)

$$
\lim _{x \rightarrow 0}\left(1-\frac{x}{2}\right)^{1 / x}
$$

8. Find the absolute maximum and absolute minimum of the function on the indicated interval.
(a) $f(x)=3 x^{4}+8 x^{3}-18 x^{2}+5,[-4,2]$
(b) $f(x)=3 x^{4}-4 x^{3}-12 x^{2},[-3,1]$
9. Find the average value of the function $\sin x$ on the interval $[0, \pi]$.
10. Find the average value of the function $\frac{1}{\sqrt{1-x^{2}}}$ on the interval $[0,0.5]$.
11. Sketch the region enclosed by the given curves. Use an integral to find the area enclosed.
(a) $y=x, y=x^{2}$
(b) $y=x^{2}-2 x, y=x+4$
12. Find the volume when the area enclosed in $\# 11(\mathrm{a})$ is rotated . . .
(a) around the x-axis
(b) around the line $x=-1$
(c) around the y-axis
(d) around the line $y=2$
13. When a particle is located a distance x meters from the origin, a force of $\frac{1}{1+x^{2}}$ Newtons acts on it. How much work is done in moving the particle from $x=0$ to $x=1$?
