thur wk 13
functions of time, $f(t)$ where $t \in[a, b]$ a closed internal of time speed

$$
\frac{\text { max value }}{\substack{\text { speed } \\ \text { occurs e } \\ \text { critical } \\ \text { point }}}(1 \text { st deriv }=0)
$$

max value occurs why closed?
Q endpoints
Extreme Value Theorem:

A continuous function on a closed interval achieves its maximum and minimum on that closed interval.

$$
\begin{aligned}
& f(x)=3 x+1 \\
& \text { on }[0,4)
\end{aligned}
$$

Suppose you are $1 / 4$ mile east of a stop sign, walking @ $3 \mathrm{~m} / \mathrm{h}$ east (away from the sign).
You friend is at the stop sign, heading south at $5 \mathrm{mi} / \mathrm{h}$.
Produce an equation giving the distances to the stop sign at time t, use this to find how fast the distance between you and your friend is changing 1 hour later.
(1) visual

(2) assign vanables to given info. Let $x(t)=$ your dist to sign (a) tine t.

$$
\frac{d x}{d t}=3
$$

Let $y=$ friends dist to sig

$$
\frac{d y}{d t}=5
$$

(3) Relate vanubles w) equation that describes the situation $d=$ dist. b/w you both
$=$ hypotenuse

$$
=\sqrt{x^{2}+y^{2}}
$$

(4) differentiate to relate $\frac{d x}{d t}$ \& $\frac{d y}{\text { It }}$.

$$
\begin{aligned}
& d(t)=\sqrt{x^{2}+y^{2}}=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \\
& d^{\prime}(t)=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(\partial x \cdot \frac{d x}{d t}+\partial y \frac{d y}{d t}\right)=\frac{2 x \frac{d x}{d t}+\partial y \frac{d y}{d t}}{\partial \sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x=\int \frac{d x}{d t}=\int 3 d t=3 t+C \quad b / c \text { of } A x(0)=3(0)+C \\
& x=3 t+.25
\end{aligned}
$$

(6) I hour later $x=3.25, y=5$,

$$
d^{\prime}(1)=\frac{2(3.25) \cdot 3+2(5) \cdot 5}{2 \sqrt{3.25^{2}+5^{2}}} \approx 5.8 \frac{\mathrm{~m}}{\mathrm{~h}}
$$

Suppose you are $1 / 4$ mile east of a stop sign, walking @ $3 \mathrm{~m} / \mathrm{h}$ east-(away from the sign).
You friend is at the stop sign, heading south at $5 \mathrm{mi} / \mathrm{h}$.
Produce an equation giving the distances to the stop sign at time t, use this to find how fast the distance between you and your friend is changing 12 min later.
(1) visual

(2) assign vanables to given info. Let $x(t)=$ your dist to sign $(\partial$ tine t.

$$
\frac{d x}{d t}=-3
$$

Let $y=$ friends dist to sire

$$
\frac{d y}{d t}=5
$$

(3) Relate vanables w) equation that describes, the situation

$$
\begin{aligned}
d & =\text { dist, b/w you both } \\
& =\text { hypotenuse } \\
& =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

(4) differentiate to relate $\frac{d x}{d t} \varepsilon_{i} \frac{d y}{\text { It }}$.

$$
\begin{aligned}
& d(t)=\sqrt{x^{2}+y^{2}}=\left(x^{2}+y^{2}\right)^{\frac{1}{2}} \\
& d^{\prime}(t)=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}}\left(2 x \cdot \frac{d x}{d t}+2 y^{\frac{d y}{d t}}\right)=\frac{2 x \frac{d x}{d t}+2 y \frac{d y}{d t}}{2 \sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x=\int \frac{d x}{d t}=\int-3 d t=-3 t+C \quad b / c \text { of } \quad x(0)=3(0)+C \\
& 11 \quad \Rightarrow \quad C=.25 \\
& x=-3 t+.25 \\
& 3 t=1 / 12 \\
& t=1 / 36 \mathrm{ht} \times \frac{60 \mathrm{~m}}{12 \mathrm{t}}=\frac{60}{36} \simeq .45 \\
& y=\int \frac{d u}{d t} d t=\int S d t=5 t+C \\
& \text { friend was } \\
& y(0)=S(0)+C=C \\
& t=0 \Rightarrow y=0 \\
& y=S t
\end{aligned}
$$

$12 \min \Rightarrow 1 / 5=.2$ hour.
(6) 12 min later $\begin{aligned} x & =-3(-2)+.25 \\ & =\end{aligned}$

$$
y=5
$$

Find the absolute max / mo of

$$
f(x)=x^{4}-4 x^{2} \quad \text { on }[1,2]
$$

(1) Find Local maximin'

$$
\begin{aligned}
f^{\prime}(x)= & 4 x^{3}-8 x=0 \\
\text { set } & =0 \\
& 4 x\left(x^{2}-2\right)=0 \\
& x=0 \\
& x= \pm \sqrt{2}\} \text { cntizal pts. }
\end{aligned}
$$

(2) compare f a endpoints w/ f e cntizch pis

x	0	$-\sqrt{2}$	$\sqrt{2}$	1	2
$f(x)$	0			-3	0

