Wed wk 13
Related Rates:
Imagine the radius of a circle is increasing a fixed $5 \mathrm{in} / \mathrm{s}$.

Goal:
Find: $\frac{d C}{d t}$
How. Relate the Rates "Find equation that involves both C anil r.
do:
take denvative of $\quad C=\partial \pi r$, Note:
w.r.t. time $\downarrow \frac{d}{d t}, \quad \begin{aligned} & \text { Note } \\ & i r=f u n c t i o n ~ o f ~ t i m e ~\end{aligned} \sum_{i}$ Remember chain rule

$$
\frac{d}{d t}\left(2 \pi(3 t+1)^{2}=2 \pi \cdot 2(3 t+1) \cdot 3\right.
$$

$$
\frac{d C}{d t}=2 \pi \cdot 1 \cdot r^{0} \cdot \frac{d r}{d t}=2 \pi \cdot \frac{d r}{d t}
$$

II
so:

$$
\frac{d c}{d t}=2 \pi \cdot 5=10 \pi
$$

In the setting above, how fast is the area chan sing, Depends on how big the radius is.

$$
\frac{d r}{d t}=5
$$

$$
A=\pi r^{2}
$$

$$
\frac{d A}{d t}=\frac{1}{I t}\left(\pi r^{2}\right)=2 \pi r \cdot \frac{d r}{d t}
$$

$$
\frac{d A}{d t}=\partial \pi(10) \cdot s=100 \pi \frac{1 n^{2}}{s}
$$

In the setting above how fast is the area chap woe the diameter is 8? still $\frac{d r}{d t}=5, \quad r=? \quad(\Rightarrow r=4)$

$$
\begin{aligned}
2 r=D & =8 \\
r & =4
\end{aligned}
$$

Spheres
You need to know;

$$
\begin{aligned}
& V=V_{01}=\frac{4}{3} \pi r^{3} \\
& A=\underset{\text { Area }}{\text { Surface }}=4 \pi r^{2}
\end{aligned}
$$

C not dimension of volume is 3 , exponat is 3 (area is 2 -dimensimd), expat 112 .

Note

$$
\frac{d V}{d r}=\frac{d}{d r}\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3} \cdot 3 \pi r^{2}=\varphi_{V} \pi r^{2}
$$

Suppose a sphenic balloon is inflated \& rate of $5 \mathrm{in} / \mathrm{s}$.
How fast is the surface chawing when $r=10 \mathrm{in}$?

$$
5 \frac{\mathrm{in}^{3}}{\mathrm{~s}}=\underset{\text { rate of change }}{\text { of }}=\frac{d V}{d t} \rightarrow \text { Given } \quad \text { God: } \frac{d A}{d t} \text { when } r=10 \text {. }
$$

$$
\frac{d V}{d t} \text { Relate }
$$

$$
A=4 \pi r^{2}
$$

$$
\frac{d A}{d t}=\frac{d}{d t}\left(4 \pi r^{2}\right)=8 \pi r \cdot \frac{d r}{d t}=8 \pi(10) \cdot \frac{d r}{d t}
$$

stuck until I fill $\frac{d r}{d t}$
To find $\frac{d r}{d t}$, use gives $\frac{d V}{d t}=5=\frac{4}{3} \cdot 3 \pi r^{2} \cdot \frac{d r}{d t} \longrightarrow \quad 5=4 \pi \cdot 10^{2} \cdot \frac{d r}{d t}$ sub $r=10$, solve for $\frac{d r}{d t}$

$$
\frac{d r}{d t}=\frac{5}{400 \pi} \frac{\ln }{s}
$$

Fivalu, $\frac{d A}{d t}=80 \pi \underset{=}{i n}\left(\frac{5}{400 \pi} \frac{\mathrm{in}}{\mathrm{s}}\right)=1 \frac{\mathrm{in}^{2}}{\mathrm{~s}}$

