MA161 Final Exam Guide

1. Limits
(a) $\lim _{x \rightarrow 3}\left[\frac{1}{(x-3)}-\frac{1}{\left(x^{2}-5 x+6\right)}\right]=\frac{x-2-1}{x^{2}-5 x+6}=\frac{x-3}{(x-2)(x-3)}=\frac{1}{x-2}=1$
(b) $\lim _{x \rightarrow+\infty}\left[\sqrt{x^{2}+8 x}-x^{-} \frac{\sqrt{x^{2}+8 x}+x}{\sqrt{x^{2}+8 x}+x}=\operatorname{l}^{\frac{x^{2}+8 x-x^{2}}{\sqrt{x^{2}+8 x}+x}=\lim _{x \rightarrow+\infty} \frac{8 x}{\sqrt{x^{2}+8 x}+x} \frac{8}{\frac{1}{x}}}\right.$
$=\lim _{x \rightarrow+\infty} \frac{8}{\frac{\sqrt{x^{2}+8 x}}{x}+1}=\lim _{x \rightarrow+\infty} \frac{8}{\sqrt{\frac{x^{2}+8 x}{\sqrt{x^{2}}}}+1}=\lim _{x \rightarrow+\infty} \frac{8}{\sqrt{\frac{x^{2}+8 x}{x^{2}}}+1}=\lim _{x \rightarrow+\infty} \frac{8}{\sqrt{1+\frac{8}{x}}+1}=\frac{8}{\sqrt{1}+1}$
(c) $\lim _{x \rightarrow-4^{+}} \frac{1}{x+4}=+\infty$
$=\frac{8}{2}$
$=4$
(d) $\lim _{x \rightarrow-4} \frac{1}{x+4}=$ DNE
(e) $\lim _{x \rightarrow-4} \frac{-7}{(x+4)^{2}}=-\infty$
(f) $\lim _{x \rightarrow+\infty} e^{x} \sin x=$ DNE, but why? ?7
(g) $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}=0$, (use squeege thm)
(h) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0}^{L^{\prime}+4} \frac{\cos x}{T}=1$
(i) $\lim _{x \rightarrow \pi / 2} \frac{\sin x}{x}=\frac{2}{\pi}$
(j) $\lim _{x \rightarrow 1} \frac{x^{7}-1}{x^{5}-1}=\lim _{x \rightarrow 1} \frac{7 x^{6}}{5 x^{4}}=\frac{7}{5} x^{2}=\frac{7}{5}$
(k) $\lim _{x \rightarrow 0}\left(1+\frac{1}{2} x\right)^{1 / x}=y$

$$
\text { so } e^{\frac{1}{2}}=y \quad \lim _{\substack{x \rightarrow \pm \\ 1}} \frac{\frac{1}{2}}{\frac{1+\frac{1}{2} x}{1}}=\frac{1}{2}
$$

$$
\ln \lim _{x \rightarrow 0}\left(1+\frac{1}{2} x\right)^{1 / x}=\ln y
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(1+\frac{1}{2} x\right)=\ln y \\
& =\lim _{x \rightarrow 0} \ln \left(\left(1+\frac{1}{2} x\right)^{1 / x}\right)=\lim _{x \rightarrow 0} \frac{1}{x} \ln \left(1+\frac{1}{2} x\right)=\ln _{\left.x \rightarrow \frac{1}{2} x\right)}^{x}=\frac{0}{0}
\end{aligned}
$$

(1) $\lim _{x \rightarrow 2} 7=7$
(m) $\lim _{x \rightarrow 2} x^{3}+3=11$
(n) $\lim _{x \rightarrow-4^{-}} \frac{1}{x+4}=$ Note: $x \rightarrow-4^{-}$means $x \approx \frac{\downarrow^{-4}}{\frac{1}{-4}}$ but $x<4$, so $x \approx-5,-4,5,-4,1,-4,01$, , ,

$$
\begin{array}{c|c|c|c|l}
x & -5 & -4,5 & -4,1 & -4,01 \\
\hline \frac{1}{x+4} & \frac{1}{-1} & \frac{1}{-1 / 2} & \frac{1}{-1 / 10}=-10 & \frac{1}{-1 / 100}=-100
\end{array}
$$

2. Use the limit definition of the derivative to find $f^{\prime}(x)$.

$$
f(x)=\frac{1}{2 x+1}
$$

$\lim _{h \rightarrow 0} \frac{1}{\partial(x+h)+1}-\frac{1}{\partial x+1}=\lim _{h \rightarrow 0} \frac{\partial x+1-[\partial(x+h)+1]}{[2(x+h)+1][\partial x+1]} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{\partial x+1-\partial x-\partial h-1}{\text { state }} \cdot \frac{1}{h}$ $=\lim \frac{-2 h}{\text { stat }} \cdot \frac{1}{n}=\lim _{h \rightarrow 0} \frac{-2}{\operatorname{stat} 1}$ $\lim _{h \rightarrow 0} \frac{-2}{[2(x+h)+1][2 x+1]}=\frac{-2}{(2 x+1)^{2}}$
3. Find $f^{\prime}(x)$
(a) $f(x)=2$
(0)
(b) $f(x)=x$
(c) $f(x)=e^{2 x}-3 x \quad 2 e^{2 x}-3$
(d) $f(x)=\frac{1}{1+x^{2}} \quad-\left(1+x^{2}\right)^{-2} \cdot 2 x$
(e) $f(x)=\tan ^{-1} x$

$$
\frac{1}{1+x^{2}}
$$

(f) $f(x)=\sqrt{x^{4}+5}$

$$
\frac{1}{2}\left(x^{4}+5\right)^{-\frac{1}{2}} \cdot 4 x^{3}
$$

(g) $f(x)=\sin ^{3} x \quad 3 \sin ^{2} x \cdot \cos x$
(h) $f(x)=x^{3} e^{2 x+5}$

$$
3 x^{2} \cdot e^{2 x+5}+x^{3} \partial e^{2 x+5}
$$

(i)

$$
\begin{aligned}
& f(x)=x^{x}=y \\
& \ln y=\ln x^{x}=x \ln x \\
& y^{\prime}=\ln x+\frac{x}{x}=\ln x+1 \quad \text { so } \quad y^{\prime}=[\ln x+1] \cdot x^{x}
\end{aligned}
$$

4. Find the absolute maximum and absolute minimum values of $f(x)=x^{3}-3 x+1$ on the interval $[0,3] . \quad f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=0 ; x= \pm 1$

x	$f(x)$	
-1	3	
0	1	
1	-1	AbsMin:1
3	19	Abs Max: 19

5. Find an equation of the tangent line to the graph of $y=x^{5}$ at $x=2$. Then use it to approximate $(2.04)^{5}$.

$$
\begin{aligned}
y^{\prime}(2) & =5(2)^{y}=80 \\
\left.y\right|_{x=2} & =32 \\
y-32 & =80(x-2) \\
y & =80 x-128
\end{aligned}
$$

$$
\begin{aligned}
\left.y\right|_{x=2.04} & \approx 80(2.04)-128 \\
& \approx 163.2-128=35.2
\end{aligned}
$$

6. (a) Find the point on the line $y=x+1$ that is closest to the point $(1,1)$. Hint, use the distance formula between $(1,1)$ and $(x, x+1)$.
(b) If 1200 square centimeters of material is available to make an open box with a square base, find the largest possible volume for the box.
(a) $d=\sqrt{(x-1)^{2}-(x+1-1)^{2}}$
$=\sqrt{2 x^{2}-2 x+1}$
(b) God l produce lavgst volume with a $d^{\prime}=0 \Leftrightarrow 4 x-2=0$
$\left(\frac{1}{2}, \frac{3}{2}\right)$ $x=1 / 2$
so $y=3 / 2$

$$
V=\left[\frac{300}{20}-\frac{1}{4}(20)\right] \cdot\left[20^{2}\right]=\begin{gathered}
x=20 \\
{[15-5] 400=4000 \mathrm{~cm}^{3}}
\end{gathered}
$$

7. (a) If the radius of a circle is increasing at a rate of $1.5 \mathrm{~cm} / \mathrm{s}$, find the rate at which the area is changing when the radius is 4 cm .
(b) Ship A is 150 miles west of Ship B. Ship A sails south at a rate of 30 miles per hour. Ship B sails north at a rate of 40 miles an hour. Find the rate at which the distance between the ships is changing two hours later.

$$
\begin{aligned}
& \text { (a) } \frac{d r}{d t}=1.5 \text { (given) } \\
& A=\pi r^{2}, 8 \\
& \frac{d A}{d t}=2 \pi r \cdot \frac{d r}{d t} \\
& 2 \pi(4) \cdot(1,5)=12 \pi
\end{aligned}
$$

8. Evaluate the indefinite integral.
(a) $\int \sin ^{2}(x) \cos (x) d x=\frac{\sin ^{3}}{3}+C$
(b) $\int e^{3 x-2} d x=$

$$
\frac{1}{3} e^{3 x-2}+c
$$

(c) $\int \frac{2 x}{x^{2}+1} d x=$

$$
\ln \left|x^{2}+1\right|+c
$$

(d) $\int \frac{7+2 x}{x^{2}+1} d x=$

$$
7 \tan ^{-1} x+\ln \left|x^{2}+1\right|+c
$$

(e) $\int 4 x^{3}\left(x^{4}+1\right)^{5} d x=$

$$
\frac{\left(x^{y}+1\right)}{6}
$$

(f) $\frac{1}{2} \int \frac{2 x^{3} \cdot 2}{\sqrt{x^{4}+5}} d x=\frac{1}{2} \int \frac{d u}{\sqrt{u}}=\frac{\frac{1}{2} u^{\frac{1}{2}}}{\frac{1}{2}}+c=\sqrt{u}+c$
$u=x^{4}+5$

$$
\begin{aligned}
& n=x^{4}+5 \\
& d n=4 x^{3}
\end{aligned}
$$

$$
=\sqrt{x^{4}+5}+c
$$

9. Find the area of the region that lies under the graph of

$$
f(x)=\sqrt[4]{x}
$$

between $x=1$ and $x=16$.

$$
\begin{aligned}
\int_{1}^{16} x^{1 / 4} d x=\left.\frac{4}{5} x^{5 / 4}\right|_{1} ^{16}=\left.\frac{4}{5} x \cdot x^{1 / 4}\right|_{1} ^{16} & =\frac{4}{5}[16 \cdot 2-1] \\
& =\frac{4}{5}[31]=\frac{124}{5}=20.8
\end{aligned}
$$

10. Given the following information, find $f(x)$.
(a) $f^{\prime \prime}(x)=6 x-4$
(b) $f^{\prime}(-1)=13$
(c) $f(2)=20$

$$
f(x)=x^{3}-2 x^{2}+6 x+8
$$

$$
\begin{gathered}
f^{\prime}=\frac{6 x^{2}}{2}-4 x+c / f^{\prime}(-1)=3+4+c \\
f_{1}^{\prime}(x)=3 x^{2}-4 x+6 \\
f(x)=\int f^{\prime}(x) d x=x^{3}-2 x^{2}+6 x+c \\
f^{\prime}(2)=8-8+12+c \\
1 \prime 26
\end{gathered} \quad c=8 .
$$

11. Find the volume of the solid obtained by revolving the region between the x-axis and the curve

$$
y=\sqrt[3]{x}
$$

over $0 \leq x \leq 8$, around the x-axis.

DISC:

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi \sqrt[3]{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& V=\int_{0}^{8} \pi \sqrt[3]{x^{2}} d x=\left.\frac{\pi x^{5}}{5 / 3}\right|_{0} ^{8 / 3} \\
& \frac{3.32 \pi}{5}=\frac{96 \pi}{5}
\end{aligned}
$$

