MA161 Final Exam Guide

1. Limits
(a) $\lim _{x \rightarrow 3}\left[\frac{1}{(x-3)}-\frac{1}{\left(x^{2}-5 x+6\right)}\right]=$
(b) $\lim _{x \rightarrow+\infty}\left[\sqrt{x^{2}+8 x}-x\right]=$
(c) $\lim _{x \rightarrow-4^{+}} \frac{1}{x+4}=$
(d) $\lim _{x \rightarrow-4} \frac{1}{x+4}=$
(e) $\lim _{x \rightarrow-4} \frac{-7}{(x+4)^{2}}=$
(f) $\lim _{x \rightarrow+\infty} e^{x} \sin x=$
(g) $\lim _{x \rightarrow+\infty} \frac{\sin x}{x}=$
(h) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
(i) $\lim _{x \rightarrow \pi / 2} \frac{\sin x}{x}=$
(j) $\lim _{x \rightarrow 1} \frac{x^{7}-1}{x^{5}-1}=$
(k) $\lim _{x \rightarrow 0}\left(1+\frac{1}{2} x\right)^{1 / x}=$
(1) $\lim _{x \rightarrow 2} 7=$
(m) $\lim _{x \rightarrow 2} x^{3}+3=$
(n) $\lim _{x \rightarrow-4^{-}} \frac{1}{x+4}=$
2. Use the limit definition of the derivative to find $f^{\prime}(x)$.

$$
f(x)=\frac{1}{2 x+1}
$$

3. Find $f^{\prime}(x)$
(a) $f(x)=2$
(b) $f(x)=x$
(c) $f(x)=e^{2 x}-3 x$
(d) $f(x)=\frac{1}{1+x^{2}}$
(e) $f(x)=\tan ^{-1} x$
(f) $f(x)=\sqrt{x^{4}+5}$
(g) $f(x)=\sin ^{3} x$
(h) $f(x)=x^{3} e^{2 x+5}$
(i) $f(x)=x^{x}$
4. Find the absolute maximum and absolute minimum values of $f(x)=x^{3}-3 x+1$ on the interval $[0,3]$.
5. Find an equation of the tangent line to the graph of $y=x^{5}$ at $x=2$. Then use it to approximate $(2.04)^{5}$.
6. (a) Find the point on the line $y=x+1$ that is closest to the point $(1,1)$. Hint, use the distance formula between $(1,1)$ and $(x, x+1)$.
(b) If 1200 square centimeters of material is available to make an open box with a square base, find the largest possible volume for the box.
7. (a) If the radius of a circle is increasing at a rate of $1.5 \mathrm{~cm} / \mathrm{s}$, find the rate at which the area is changing when the radius is 4 cm .
(b) Ship A is 150 miles west of Ship B. Ship A sails south at a rate of 30 miles per hour. Ship B sails north at a rate of 40 miles an hour. Find the rate at which the distance between the ships is changing two hours later.
8. Evaluate the indefinite integral.
(a) $\int \sin ^{2}(x) \cos (x) d x=$
(b) $\int e^{3 x-2} d x=$
(c) $\int \frac{2 x}{x^{2}+1} d x=$
(d) $\int \frac{7+2 x}{x^{2}+1} d x=$
(e) $\int 4 x^{3}\left(x^{4}+1\right)^{5} d x=$
(f) $\int \frac{2 x^{3}}{\sqrt{x^{4}+5}} d x=$
9. Find the area of the region that lies under the graph of

$$
f(x)=\sqrt[4]{x}
$$

between $x=1$ and $x=16$.
10. Given the following information, find $f(x)$.
(a) $f^{\prime \prime}(x)=6 x-4$
(b) $f^{\prime}(-1)=13$
(c) $f(2)=20$
11. Find the volume of the solid obtained by revolving the region between the x-axis and the curve

$$
y=\sqrt[3]{x}
$$

over $0 \leq x \leq 8$, around the x-axis.

