Grade:

$$
\begin{aligned}
& .25(\text { werwork })+.25(\text { Final })+.50\binom{\text { Exam }}{\text { ArB }} \\
& .25(100)+.75\left(\text { Exam }_{\text {Avs }}\right)=
\end{aligned}
$$

Mane similar problems appear on Final.
Name: \qquad MA161 • Exam $4 \cdot$ April 22, 2024

1. Find the point on the line $y=\sqrt{x+1}$ that is closest to the point $(8,0)$.
optimization
closest \Rightarrow minimize distance formula' $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

$$
d=\sqrt{(8-x)^{2}+(0-\sqrt{x+1})^{2}}=\sqrt{(8-x)^{2}+(x+1)}=\sqrt{64-16 x+x^{2}+x+1}=\sqrt{x^{2}-15 x+65}
$$

equivalently, find where min of d^{2} occurs:

$$
\begin{aligned}
& D=d^{2}=x^{2}-15 x+65 \\
& D^{\prime}=2 x-15=0 \Rightarrow x=15 / 2=7.5 \Rightarrow y=\sqrt{7.5+1}=\sqrt{8.5} \quad(7.5, \sqrt{8.5})
\end{aligned}
$$

$D=d^{2}=x^{2}-15 x+65$
2. Consider the region bound by $y=1, x=0$ and $y=\sqrt{x}$. Find the volume of the solid of revolution when the region is revolved about the:

$$
\begin{aligned}
r_{i}= & \sqrt{x} \\
& \pi \int_{0}^{1} r_{0}^{2}-r_{i}^{2} d x \\
& \pi \int_{0}^{1} 1-\sqrt{x}^{2} d x=\pi \int_{0}^{1} 1-x d x \\
& \pi\left(x-\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right)=\frac{\pi}{2}
\end{aligned}
$$

3. Revolve the region above about the \mathbf{y}-axis and compute the volume of the resulting solid. change var to y !

$$
y=\sqrt{x} \rightarrow y^{2}=x
$$

4. Find the equation of the tangent line to the graph of $y=\left(x^{2}+1\right) \sin x$ at $x=0$.
points $x=0, y=\left(0^{2}+1\right) \cdot \sin (0)=0 \quad(0,0)$

$$
\text { slope }=\text { derivative }
$$

© x-corrd

$$
\begin{aligned}
& f^{\prime}(x)=2 x \cdot \sin x+\left(x^{2}+1\right) \cos (x) \\
& f^{\prime}(0)=\underbrace{2 \cdot \theta \cdot \sin \theta}_{\varnothing}+\underbrace{\left(\theta^{2}+1\right) \cos (0)}_{\varnothing}=1
\end{aligned}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y=x
\end{aligned}
$$

5. Find the average value of the function below from $x=\underline{0}$ to $x=2 \pi$.

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

$$
f(x)=\sin (3 x)+1
$$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (3 x)+1 d x=\frac{1}{2 \pi}[\int_{u=3 x}^{2 \pi} \sin (3 x)+1 \quad \underbrace{2 \pi}_{x}]
$$

$$
=\frac{1}{2 \pi}\left[-\left.\frac{1}{3} \cos (3 x)\right|_{0} ^{2 \pi}+\left.x\right|_{0} ^{2 \pi}\right]=
$$

$$
\begin{aligned}
& d u=3 d x \\
& \frac{1}{3} d u=d x \\
&=\frac{1}{2}+\left[\frac{1}{3} \int_{0}^{2 \pi} \sin (u) d u+\left.x\right|_{0} ^{2 \pi}\right]
\end{aligned}
$$

6. Suppose the volume of a spherical balloon increases at a rate of $24 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}$. Find the rate that its diameter is increasing when the diameter is 3 cm .

$$
\frac{d V}{d t}=24, V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3}=\frac{4}{3} \pi \frac{D^{3}}{8}=\frac{\pi}{3} D^{3}
$$

$$
\frac{d V}{d t}=\frac{\pi}{6} \cdot 3 \cdot D \cdot \frac{d D}{d t} \quad \text { set } \quad D=3, \quad \operatorname{sib} \frac{d v}{d t}=24, \quad \text { shive } \frac{d D}{d t}
$$

$$
\frac{24}{\frac{\pi}{6} \cdot 3 \cdot(3)^{2}} \approx 1,5 \frac{c n}{s}=\frac{d D}{d t}
$$

7. Find the absolute maximum and absolute minimum of the function on the indicated interval.
optimization take deriv, set $=0$, find c.p.'s $f(x)=\frac{x^{4}}{4}-2 x^{2}+1,[-3,1]$ make table, compare, endpoints $\frac{1}{\xi}$ C. Pi's
value of @

$$
\text { lw } l w 28, \quad l=28 / w
$$

8. A gardener is planning to build a rectangular fence which encloses $28 \mathrm{ft}^{2}$. One of the sides is to be made of stone which costs $10 \frac{\mathscr{\Phi}}{f t}$, and the remaining sides are to be made of wood which costs $4 \frac{\mathscr{f}}{f t}$.

$$
c=14(20 / w) \text { solve this }
$$

(b) What is the mimimum cost?

Plug aus to (a) into C.
9. A box with an open top is to be constructed from a square piece of cardboard, 12 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.

$$
V=x(12-2 x)^{2} \rightarrow 1(12-2 x)^{2}+x(2(12-2 x)(-2))
$$

12

$$
\begin{aligned}
& \text { take dens est }=0 \text {, suite } \\
& Y^{\prime}=[12-2 x][(12-2 x)-4 \cdot x]=0
\end{aligned}
$$

$$
\begin{gathered}
12-2 x=0 \\
x=6 \\
x=2
\end{gathered}
$$

$$
V(2)=2(12-2(2))^{2}=
$$

