

Domain!

$$
f(x)=\frac{4}{3 / x+1}
$$

$$
\begin{aligned}
& \text { (1) } \frac{3}{x}+1=0 \\
& \begin{array}{l}
\text { commor } \\
\text { denon }
\end{array} \\
& \frac{3}{x}+\frac{x}{x}=0 \\
& \frac{3+x}{x}=0 \\
& \begin{array}{c}
\text { cooss } \\
\text { mult }
\end{array} \\
& 3+x=0 \\
& x=-3 \\
& \mathbb{R}-\{-3\} \\
& \text { Also } \quad x \neq 0 \\
& (-\infty,-3) \cup(-3,0) \cup(0, \infty)
\end{aligned}
$$

Find the equations of the lines that pass through the point $(4,8)$ and are parallel to and perpendicular to the line with equation $y+2 x=2$.
Parallel: $y=$ \qquad
Perpendicular: $y=$ \square
Solution:

Given line: $y+2 x=2$ it's slope: $y=-2 x+2$ is -2

$$
\begin{aligned}
& \text { slope }=-2 \\
& \text { point }=(4,8) \\
& \text { perpendicular } \begin{array}{c}
\text { slope }
\end{array} \frac{-1}{-2}=\frac{1}{2}
\end{aligned}
$$

I. $\left.y-y_{1}=m\left(x-x_{1}\right)\right] \quad y-8=-2(x-4)$

$$
y=-2 x+16
$$

II. Serpenidulor, Same point, but $m=\frac{1}{2}$

$$
y-8=\frac{1}{2}(x-4)
$$

$$
\begin{aligned}
& \text { exponents do not play nicely with + or - } \\
& \text { F } \quad(x+y)^{2}=x^{2}+y^{2} \text {. } \\
& <\text { Freshman's Dream } \\
& \text { † } \quad(x+y)^{2}=x^{2}+2 x y+y^{2} \text {. } \\
& \text { F } \quad \frac{x}{x+y}=\frac{1}{y} \text {. } \\
& \text { F } \quad x-(x+y)=y \text {. } \\
& F \quad \sqrt{x^{2}}=x \text {. } \\
& \text { T } \quad \sqrt{x^{2}}=|x| \text {. } \\
& \text { F } \quad \sqrt{x^{2}+4}=x+2 \text {. exponents do not play nicely with }+ \text { or - } \\
& \text { F } \frac{1}{x+y}=\frac{1}{x}+\frac{1}{y} \text {. try sone samples }
\end{aligned}
$$

