Wed wk 2
Function Composition / Evaluation / Difference Quotients
Evaluation:
whatever is between the parenthesis replaces every occurance of x
Ex

$$
f(x)=\sqrt{x-7}
$$

Evaluate $f(x) \odot x=10$ means, $f(10)=\sqrt{10-7}=\sqrt{3}$

$$
\begin{aligned}
& f(y)=\sqrt{y-7} \\
& f(x+5)=\sqrt{x+5-7}=\sqrt{x-2} \\
& f\left(x^{2}+3\right)=\sqrt{x^{2}+3-7}=\sqrt{x^{2}-4}
\end{aligned}
$$

Composition. $f(x)=\sqrt{x-7}, \quad g(x)=\frac{1}{x+3}$

$$
f \circ g(x) \stackrel{\text { means }}{=} f(g(x))=\sqrt{g(x)-7}=\sqrt{\frac{1}{x+3}-7}=\sqrt{\frac{1-7(x+3)}{x+3}}=\sqrt{\frac{-7 x-20}{x+3}}
$$

(domain of this is domain of result $\mathbb{R}-\{-3\}$ and $(-7 x-20) / x+3>0$ intersect with domain of $g(x)$.)

$$
\begin{aligned}
& \left.g \circ f(x)=g(f(x))=\frac{1}{f(x)+3}=\frac{1}{\sqrt{x-7}+3}\right\} \begin{array}{l}
\text { domain of this } \\
\text { composition in }
\end{array} \\
& \sqrt{x-7}=-3 \\
& \text { The domain of a composite function is = the domain of } \\
& \text { the result INTERSECTED with the domain of the } \\
& \text { inside function. } \\
& \text { Domain of inside } \\
& \sqrt{x-7}, \quad x-7 \geqslant 0 \\
& x \geqslant 7 \\
& {[7,16) \cap(16, \infty)} \\
& x-7=9 \\
& x=16 \\
& =\mathbb{R}-\{16\} \\
& \text { domain of result }
\end{aligned}
$$

Difference Quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

/ h is a small \#)
slope of this segment 15

Ex. Evaluate the diff e quotiont when $f(x)=\sqrt{x-7}$

$$
\begin{aligned}
& f(x+h)=\sqrt{x+h-7} \\
& { }^{\text {Ez }} \\
& f(10)=\sqrt{10-7}=\sqrt{3} \\
& f(5+5) \neq \sqrt{5-7}+5
\end{aligned} \quad \begin{aligned}
& f(x+h) \neq \sqrt{x-7}+h
\end{aligned}
$$

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sqrt{(x+h)-7}-\sqrt{x-7}}{h} \text { diff of squares }
$$

Difference of Squares

$$
\begin{align*}
A^{2}-B^{2} & =(A-B)(A+B) \\
b / c & =A^{2}+A B-B A-B^{2} \tag{1}\\
& =A^{2}-B^{2}
\end{align*}
$$

$\begin{gathered}\text { rationalize } \\ \text { numerator } \\ \text { nut }\end{gathered}=\frac{A}{h} \cdot \frac{\sqrt{(x+h)-7}-\sqrt{x-7}}{h} \cdot\left(\frac{A}{\sqrt{x+h-7}+\sqrt{x-7}}\right)=A^{2}-B^{2}$
multiply (3)

$$
=\frac{(x+h-7)-(x-7)}{h(\sqrt{x+h-7}+\sqrt{x-7}} \stackrel{\text { (4) }}{\frac{-x+7}{\text { combine }} \quad \frac{h}{h(\sqrt{x+h-7}+\sqrt{x-7}} \stackrel{\text { cancel }}{\sqrt{x+h-7}+\sqrt{x-7}}}
$$

$$
\frac{x+\frac{27}{x^{2}}}{1+\frac{3}{x}}=\frac{\square}{\square}
$$

divide by a fraction?
.. multiply by reciprocal
Ideai
$\frac{\frac{A}{B}}{\frac{C}{D}}=\frac{A}{B}+\frac{D}{C}$
get common denom on top and again on bottom. combine into single fractions

$$
\begin{aligned}
\frac{\frac{x^{2}}{x^{2}} x+\frac{27}{x^{2}}}{\frac{x}{x} 1+\frac{3}{x}}=\frac{\frac{x^{3}}{x^{2}}+\frac{27}{x^{2}}}{\frac{x+3}{x}}=\frac{\frac{x^{3}+27}{x^{2}}}{\frac{x+3}{x}} & =\frac{x^{3}+27}{x^{2}} \frac{x}{x+3} \\
3^{2} & =\frac{x^{3}+27}{x(x+3)}
\end{aligned}
$$

$$
x^{3}+3^{3}=(x+3)\left(x^{2}-3 x+3^{2}\right)
$$

$$
\begin{aligned}
& =\frac{(x+3)\left(x^{2}-3 x+9\right)}{x(x+3)} \\
& =\frac{x^{2}-3 x+9}{x}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& f \circ f(x)=f(f(x))=f\left(\frac{1}{x}\right)=\frac{1}{\left(\frac{1}{x}\right)}=x
\end{aligned}
$$

composition"
\Rightarrow doman is domain of
 intersectel ul donain of $\frac{1}{x}$

$$
\mathbb{R} \wedge(\mathbb{R}-\{0\})
$$

$$
f(x)=\frac{1}{x} \quad \text { and } \quad g(x)=8 x^{3}-8 x
$$

$x)$ and the domain of h.

$$
\begin{array}{cc}
\frac{1}{8 x^{3}-8 x} & \text { so } 8 x^{3}-8 x=0 \\
8 x\left(x^{2}-1\right)=0 \\
(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty) & x=0 \\
x= \pm 1
\end{array}
$$

