Next 3 weeks: Derivatives
Today: derivatives of $f(x)=\sin (x), g(x)=\cos (x)$.

The instantaneous rate of change in y-coorg, $y=\sin (a)$ is different, depending what a is.

When a is close to 0 , the derivative of $\sin (a)$ is big
When a is close to 90 degrees, the derivative of $\sin (a)$ is small.

We'll see precisely why, next.

$$
\begin{aligned}
& f(x)=\sin (x) \\
& f^{\prime}(x)=
\end{aligned}
$$

\qquad

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\sin (h) \cos (x)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)-1 \cdot \sin (x)+\sin (h) \cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x)(\cosh -1)+\sin (h) \cos (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x)(\cos h-1)+\sin (h) \cos (x)}{h}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 \quad b / c \quad \cos x-1 \approx 0
$$

$$
=\theta+\cos (x) \cdot 1=\cos (x)
$$

Tools!

$$
\text { Tools! } n: f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\sin (A+B)=\sin A \cos B+\sin B \cos A
$$

Limit Properties:
limits distribute over sums

$$
=\lim _{h \rightarrow 0} \frac{\sin (x)(\cos (h)-1)}{h}+\lim _{h \rightarrow 0} \frac{\sin (h) \cos (x)}{h}
$$ \& multiplication

$$
=\frac{\sin (x) \cdot \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}}{{ }^{\prime}}+\frac{\cos (x) \lim _{h \rightarrow 0} \frac{\sin (h)}{h}}{!}
$$

$$
\lim _{h \rightarrow 0} 5 \cdot \cos (h)=5 \lim _{h \rightarrow 0} \cos (h)
$$

So $\frac{d}{d x}(\sin (x))=\cos (x)$

Ex
what is the derivative

$$
\text { of } f(x)=\sin (x)
$$

Ans

$$
\left.\begin{array}{l}
f(x)=\sin x \\
f^{\prime}(x)=\frac{\cos x}{} \quad \text { so }
\end{array}\right\} \begin{aligned}
& f^{\prime}(0)=\cos (0)=1 \\
& f^{\prime}(\pi / 2)=\cos (\pi / 2)=0 \\
& f^{\prime}(-\pi)=\cos (-\pi)=-1
\end{aligned}
$$

Exercise: Reconcile these answers with:
https://www.desmos.com/calculator/yqubb4hqat|

By a similar calculation we find

$$
\frac{d}{d x}(\cos x)=-\sin (x)
$$

Exercise

$$
\begin{aligned}
& f(x)=\underbrace{\frac{1}{x}^{\prime}+x^{2}+3 x^{4}}_{\text {use power rule }}+5 \cos x \\
& f^{\prime}(x)=-x^{-2}+2 x+12 x^{3}-5 \sin x
\end{aligned}
$$

Facts

$$
\left.\left.\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}|f(x)| \pm \frac{d}{d x} \right\rvert\, g(x)\right)
$$

$$
\text { careful not } x \text { or } \div!!!!
$$

$$
\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))
$$

