WK \qquad Mon

If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height in feet after t seconds is given by $y=40 t-16 t^{2}$.
(a) Find the average velocity for the time period beginning with $t=2$ and
(1) lasting 0.5 seconds:
(2) lasting 0.1 seconds: $\square \begin{aligned} & \mathrm{ft} / \mathrm{s} \\ & \mathrm{ft} / \mathrm{s} \\ & \text { interval }\end{aligned}$

$\frac{y(2.5)-y(2)}{2.5-2}=\frac{\left.\left(40(2.5)-16(2.5)^{2}\right)-(40 / 2)-16(2)^{2}\right)}{.5}$
(3) lasting 0.05 seconds: ft / s
(4) lasting 0.01 seconds: $\mathrm{ft} / \mathrm{s}[\partial, \partial, 01]$
(b) Find the instantaneous velocity when $t=2: \quad-24 \quad \mathrm{ft} / \mathrm{s} \quad y^{\prime}(2)=40-32(2)=-24$
denvative of y when $t=Q$
weill use the Power Rale for derivatives.

$$
\begin{array}{ll}
y=40 t-16 t^{2} & \begin{array}{l}
\text { now, "t " is the variable, not } x \\
\text { so we'll take the derivative with } \\
\text { respect to } t
\end{array} \\
y^{\prime}=40-32 t & \frac{d}{d t}(y)=y^{\prime}=\frac{d y}{d t}
\end{array}
$$

(b) Guess the slope of the tangent line to the curve at P.
(c) Using the slope from part (b), find the equation of the tangent line to the curve at P.
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(b) .5
(c) \square

$$
\begin{aligned}
y-\ln \partial & =\sin (x-\gamma) \\
y & =05 x-1+\ln 2
\end{aligned}
$$

Power Rule

$$
\begin{aligned}
& f(x)=x^{n} \text {, think } n=2,3,4,5, \ldots \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\binom{n}{3} x^{n-3} h^{3}+\ldots+\binom{n}{n-1} x^{1} h^{n-1}+h^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(n x^{n-1}+\binom{n}{2} x^{n-2} h^{2}+\ldots+h^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+\binom{n}{2} x^{n-2} h^{2}+\ldots+h^{n-1}=n x^{n-1} \\
& \text { So: } \\
& f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2} \\
& (x+h)^{2}=x^{2}+\partial x h+h^{2} \\
& (x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3} \\
& (x+h)^{4}=x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& \text { (6) " } 6 \text { chose } 1 " \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& 5!=5.4 \cdot 3.2 \cdot 1
\end{aligned}
$$

Reminder of two important derv. properties
: $\frac{d}{d x}=$ symbol for "the derivative $\underbrace{\text { with respect to } x}_{x \text { is the variable }}$ "
(1) $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$
piece by piece (works for $+1-$)
E+
Let $F(x)=x^{2}+x^{3}$

$$
F^{\prime}(x)=2 x+\downarrow x^{2}
$$

(2)

$$
\frac{d}{d x}(k \cdot f(x))=k \cdot \frac{d}{d x}(f(x))
$$

$$
k \in \mathbb{R}
$$

Ex let $F(x)=23 x^{3}$

$$
F^{\prime}(x)=23.3 x^{2}=69 x^{2}
$$

Power Rule
works for any $n \in \mathbb{R}$
eg.,

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& n=1 / 2,3 / 2 \\
& n=\pi, e,
\end{aligned}
$$

Ex

$$
\begin{aligned}
f(x) & =\sqrt{x}, \quad f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& =x^{1 / 2}
\end{aligned}
$$

Ex. $f(x)=x^{\pi}, f^{\prime}(x)=\pi x^{\pi-1}$

Ex Careful! the x must be in the base.

$$
f(x)=2^{x} \quad f^{\prime}(x)=\begin{gathered}
\text { power rule } \\
\text { doesnt apply }
\end{gathered} \quad f^{\prime}(x) \neq x \cdot 2^{x-1}
$$

