Math 161 - Calculus - Exam 1
Name: \qquad
February 7, 2024
Show your work to receive full credit.

1. Evaluate the following limits.:
(1.1) $\lim _{x \rightarrow 6} \frac{8}{x-6}$
(1.2) $\lim _{x \rightarrow 6} \frac{1}{(x-6)^{2}}$
(1.3) $\lim _{x \rightarrow+\infty} \frac{-1}{x-4}$
(1.4) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
(1.5) $\lim _{x \rightarrow+\infty} \frac{\cos (3 x)}{x} \leftarrow \frac{[-1,1]}{x} \rightarrow \mathbb{\text { squerge }}$
(1.6) $\lim _{x \rightarrow-\infty} e^{x} \sin (x) \quad e^{-N} \sin (N)=\frac{\sin (N) \leftharpoonup \text { boundal } \in[-1,1]}{e^{N} \leftharpoonup \text { large }} \rightarrow(0)$
(1.7) $\lim _{x \rightarrow 0} e^{x} \sin (x) \stackrel{\text { D.S. }}{=} e^{0} \cdot \sin (0)=1.0=0$
(1.8) $\lim _{x \rightarrow 1}\left[\frac{1}{x-1}+\frac{4}{x^{2}-6 x+5}\right]$
2. Use the definition of the derivative to compute $f^{\prime}(x)$.
(2.1) $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x}{x}\left(\frac{1}{x+h}\right)-\frac{1}{x}\left(\frac{x+h}{x+h}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{x-(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{x(x+h)}}{h}=\lim _{h \rightarrow 0} \frac{-k}{x(x+h)}-\frac{1}{h}=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)} \stackrel{0 . S}{=} \frac{-1}{x^{2}}
\end{aligned}
$$

(2.2) $f(x)=2 x^{3}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{2(x+h)^{3}-2(x)^{3}}{h}=\lim _{h \rightarrow 0} \frac{2\left[(x+h)^{3}-x^{3}\right]}{h} \\
& 2 \lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=2 \lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& \\
& \begin{aligned}
& 1_{1}^{\prime}, \mid \text { degree }=3=2 \lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& 1^{2}>1 \mid \text { sum }
\end{aligned} \\
& =2\left(3 x^{2}+3 x 0+0^{2}\right)=6 x^{2}
\end{aligned}
$$

3. Karen is talking on her phone again, and walking around aimlessly. Her phone tracks the distance from the car. These distances d are listed in the table, together with the time (in seconds) at which they were calculated.

t (seconds)	0	10	20	30	40	50
d (feet)	0	25	15	15	35	30

(3.1) Find Karen's average velocity for the time period beginning with $t=10$ and lasting 10 seconds.
(3.2) Find Karen's average velocity for the time period beginning with $t=20$ and lasting 10 seconds.
(3.3) Estimate their instantaneous velocity at $t=20$ by finding the average rate of change from $t=10$ to $t=30$.
(3.4) Do you think this is a good estimate? Explain.
4. Find all solutions to

$$
\begin{aligned}
& \text { do it work } \\
& \ln (0), \ln (-1) \\
& \begin{array}{l}
\quad X=0,-1,2 \\
2 \ln (x)+\ln (x-1)=\ln (2 x), 2 \ln 2+\ln (2-1)=\ln (2,2)
\end{array}
\end{aligned}
$$

1 dea: © get

$$
\begin{aligned}
& \ln (A)=\ln (B) \\
& \text { (2) } e^{\ln (A)}=e^{\ln (B)} \\
& \text { (3) } A=B \text { solve } \\
& \text { (1) } \begin{aligned}
& \underbrace{\ln \left(x^{2}(x-1)\right)}_{\ln x^{2}+\ln (x-1)}=\ln (2 x) \\
& \ln (2 x)
\end{aligned} \\
& \text { 2) } e^{\ln \left(x^{2}(x-1)\right)}=e^{\ln (2 x)} \\
& \text { (3) } x^{2}(x-1)=2 x \text { pols. } \\
& \text { (4) } x^{3}-x^{2}-2 x=011^{0} 11^{0} \\
& x\left(x^{2}-x-2\right)=0 \Rightarrow x(x-2)(x+1)=0
\end{aligned}
$$

5. Given

$$
f(x)=\left\{\begin{array}{lll}
(x+1)^{2} & x>1 & @ x=1 \\
3 x+1 & (1+1)^{2}=4 \\
5 & x<1 & @ x=1 \\
x=1 & 5 \cdot 1+1=4
\end{array}\right.
$$

(5.1)

(5.2) Finish the definition below:

A function $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

(5.3) Use the definition of continuity to show that $f(x)$ is not continuous at $x=1$.

$$
\lim _{x \rightarrow 1} f(x)=4
$$

$$
\begin{aligned}
& \text { Left } \lim _{b / c}: \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3 x+1=4 \\
& \lim _{x \rightarrow 1^{+}} f(x)= \\
& \lim _{x \rightarrow 1}(x+1)^{2}=4
\end{aligned}
$$

\square
(5.4) Is there a way to define $f(x)$ at $x=1$ so that $f(x)$ is continuous at $x=1$? Why or why not?
yes because limit exists if we
redefine $f(x)$ \& $x=1$ to be 4 the result is continuous.
6. Simplify

$$
\left(\frac{a^{3} b^{3} c^{-1}}{b^{2} c^{-2} a^{4}}\right)^{-5}
$$

$$
\left(\frac{b c}{a}\right)^{-5}=\left(\frac{a}{b c}\right)^{5}=\frac{a^{5}}{b^{5} c^{5}}
$$

7. Simplify

8. (Give a short written response) What is the derivative of a function and what can you do with it?

Increasing \ddagger Decreasing;
$\Rightarrow f$ is increasing on (4) regions: $(-\infty,-\sqrt{8} / 3) \cup\left(\frac{\sqrt{8}}{3}, \infty\right)$

$$
f(x)=x^{3}-8 x
$$

$$
f^{\prime}(x)=3 x^{2}-8=0
$$

$$
3 x^{2}=8
$$

$$
x^{2}=\frac{8}{3}
$$

$$
x= \pm \sqrt{\frac{8}{3}} \Rightarrow \begin{gathered}
\text { critizd } \\
\text { points }
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=x^{8}-8 x^{7} \\
& \text { both dec. } \frac{1}{a} \text { concave up } \\
& f^{\prime}(x)=8 x^{7}-56 x^{6} \\
& =8\left(x^{7}-7 x^{6}\right)=0 \\
& 8 x^{6}(x-7)=0 \\
& \text { C.D.'s } x=0 \\
& x=7 \\
& f^{\prime \prime}(x)=56 x^{6}-6.56 x^{5}=0 \\
& 56 x^{5}(x-6)=0 \\
& x=0 \\
& x=6 \\
& \text { both dec. } \frac{1}{9} \text { concave up }
\end{aligned}
$$

