Monday - Week 5

1. $e^{\wedge} x$ derivative
2. product rule
3. $f(x)=\frac{3}{2 \sqrt{x}}+\frac{1}{\sqrt[3]{x}}-\frac{4}{\sqrt[4]{x}}=$ $\frac{3}{2} \cdot x^{-\frac{1}{2}}+x^{-\frac{1}{3}}-4 x^{-\frac{1}{4}-\frac{4}{4}}$

$$
f^{\prime}(x)=-\frac{1}{2} \cdot \frac{3}{2} x^{-\frac{3}{2}}-\frac{1}{3} x^{-\frac{4}{3}}+\frac{1}{4} \cdot 4 x^{\frac{-5}{4}}=-\frac{3}{4} x^{-3 / 2}-\frac{1}{3} x^{-4 / 3}+x^{-5 / 4}
$$

power rue
 x^{m}

$$
f^{\prime}(x)=4 x^{\frac{1}{3}}-7-2 x^{-\frac{3}{2}}
$$

$$
e^{x}
$$

what is e ?

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

This 'really' is the: $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=1$ only when $a=e$.
definition d.
what's the denvative of $f(x)=e^{x}$?

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} \cdot \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} \cdot 1
$$

def'a applied.

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Products
think of two functions that depend on an indep. variable, eg time, a their product is something meaningful

$$
\begin{aligned}
\text { views } & \times \text { watch-time }=\text { money } \\
\frac{d}{d t}(\text { money }) & =\begin{array}{r}
\text { rate of increase/ decrease } \\
\text { of money }
\end{array}
\end{aligned}
$$

think: Δx is small $\Rightarrow \Delta x^{2} \approx 0$
New Area: 2 rectanfs + small square $=\Delta x \cdot\left(\underline{l(x)}+\Delta x\left(h(x)+\Delta x^{2}\right.\right.$

Formula:

$$
\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

を

$$
f(x)=e^{x} \cdot \cos x
$$

$$
\begin{aligned}
f^{\prime}(x)=e^{x} \cdot \cos x+e^{x}(-\sin x) & =e^{x} \cos x-e^{x} \sin x \\
& =e^{x}(\cos x-\sin x)
\end{aligned}
$$

Ex

$$
g(x)=\overbrace{\left(x^{2}+1\right)\left(x^{3}+x\right)}^{2 x^{4}+2 x^{2}} \overbrace{(2 x)\left(x^{3}+x\right)+\left(x^{2}+1\right)\left(3 x^{2}+1\right)}^{3 x^{4}+x^{2}+3 x^{2}+1}=5 x^{4}+6 x^{2}+1
$$

Note: you could have dore.

$$
\begin{aligned}
& g(x) \stackrel{\text { algebra }}{=} x^{5}+x^{3}+x^{3}+x \\
& g^{\prime}(x)=5 x^{4}+3 x^{2}+3 x^{2}+1=5 x^{4}+6 x^{2}+1
\end{aligned}
$$

