Wk s -Thur.
warmup: $f(x)=\frac{e^{x}+\cos (x)}{3 x^{2}+\frac{1}{x}}$

$$
f^{\prime}(x)=\frac{\left(3 x^{2}+\frac{1}{x}\right)\left(e^{x}-\sin (x)\right)-\left(e^{x}+\cos (x)\right)\left(6 x-\frac{1}{x^{2}}\right)}{\left(3 x^{2}+\frac{1}{x}\right)^{2}}
$$

ww
\#19
Find an equation for the line tangent to the graph of f at $(2,22)$, where f is given by $f(x)=4 x^{3}-4 x^{2}+6$.

$$
y=32 x-42
$$

Live needs 2 ingredients: point + slope

power rule

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{2}-8 x \\
& f^{\prime}(2)=12 \cdot 4-8 \cdot 2=48-16=32=m
\end{aligned}
$$

Formula for a lire

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-22 & =32(x-2) \\
y & =32 x-42
\end{aligned}
$$

Find the derivative of $V=\frac{3}{2} \pi r^{6} b$. Assume that b is a constant.

the derivative of V , assuming r is the variable (the derivative of V with respect to r

$$
\rightarrow \frac{d v}{d r}=6 \cdot \frac{3}{2} \pi b r^{5}=9 \pi b r^{5}
$$

$$
\begin{aligned}
& V=\frac{3}{2} \pi r^{6} b=\left(\frac{3}{2} \pi b\right) r^{6} \\
& \text { similar to } \\
& V=k \cdot r^{6} \\
& \frac{d v}{d r}=6 k r^{5}
\end{aligned}
$$

$$
\text { parabola: } \downarrow \downarrow
$$

$22 /$

At a time t seconds after it is thrown up in the air, a tomato is at a height (in meters) of $f(t)=-4.9 t^{2}+55 t+1 \mathrm{~m}$.
A. What is the average velocity of the tomato during the first 4 seconds? (Include units.) $(f(4)-f(0)) /(4-0)$
B. Find (exactly) the instantaneous velocity of the tomato at $t=4$. (Include units.) $\quad f^{\prime}(4)$
C. What is the acceleration at $t=4$? (Include units.) $f^{\prime \prime}(4)$
D. How high does the tomato go? (Include units.)
E. How long is the tomato in the air? (Include units.)

For part (c) recall what the derivative is
The derivative of a function $f(x)$ is the instentanesus rate of change of $f(x)$ with respect to x.
i.e., if $f(t)=$ position @ tine t
$\underbrace{\infty}_{0}$

$$
f^{\prime}(t)=\text { rate of change of position w.r.t. time. = velocity @ time } t
$$

$$
f^{\prime \prime}(t)=\text { rate of change of velocity wry time. = accelleration @ }
$$

$$
f^{\prime \prime \prime}(t)=\text { rote of chare of accelleration wort time }=\text { jerk }
$$

$(-d)$ How high does tomato go? $\left.\begin{array}{l}\text { Solve: } \\ f^{\prime}(x)=0\end{array}\right\}$ this tells you when it was highest

$$
\begin{array}{r}
\text { then: plug in that tine into original (heist) } \\
\text { function. }
\end{array}
$$

$f(t)=-4.9 t^{2}+55 t+L_{L_{\text {initial height }}}$
$f^{\prime}(t)=-9.8 t+55$ (power rule)
set $f^{\prime}(t)=0=-9.8 t+55 \Rightarrow t=\frac{55}{9.8} \approx 5.7$ seconds
Finally max height $=f(5 / 9.8)=$
(e) How long is it in the air. $a t^{2}+b t+c=0$

$$
\begin{aligned}
& \text { solve } f(t)=0 \\
& \quad-4.9 t^{2}+55 t+1=0 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

