$$
\begin{array}{|l|l}
\hline \begin{array}{l}
\text { Wednesday }- \text { Wk } \mathbf{5} \\
\text { 1. Warmup (product rule) } \\
\text { 2. Quotient rule }
\end{array}
\end{array} \longrightarrow(b \cdot g)^{\prime}=b^{\prime} \cdot g+b \cdot g^{\prime}
$$

warm-ur

$$
\begin{aligned}
f(x) & =\left(x^{2}+\frac{3}{x}\right) \cos (x)=\left(\frac{x^{2}+3 x^{-1}}{\text { first }}\right) \frac{\cos (x)}{\text { and }} \\
f^{\prime}(x) & =\left(2 x-3 x^{-2}\right) \cos (x)+\left(x^{2}+3 x^{-1}\right)(1-\sin (x)) \\
& =\left(2 x-\frac{3}{x^{2}}\right) \cos (x)-\left(x^{2}+\frac{3}{x}\right)(\sin (x))
\end{aligned}
$$

Next, quotients'
Ex $f(x)=\frac{1}{x+1}$
power doesn't apply, $\frac{1}{x+1}=(x+1)^{-1} \quad \begin{aligned} & \text { not } \\ & \text { exacter }\end{aligned} \quad x^{m}$.

Quotient Rule
what is $f^{\prime}(x)$ if $\quad f^{\prime}(x)=\frac{F(x)}{G(x)}$ ?

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{F(x+h)}{G(x+h)}-\frac{F(x)}{G(x)}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \cdot\left[\frac{F(x+h)}{G(x+h)}-\frac{F(x)}{G(x)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{F(x+h)}{G(x+h)}-\frac{G(x)}{G(x)}-\frac{F(x)}{G(x)} \cdot \frac{G(x+h)}{G(x+h)}\right]=\lim _{h \rightarrow 0} \frac{1}{h} \frac{F(x+h) G(x)-F(x) G(x+h)}{G(x+h) G(x)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{F(x+h) G(x)-F(x) \cdot G(x)+F(x) G(x)-F(x) G(x+h)}{G(x+h) G(x)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \frac{G(x)(F(x+h)-F(x))-F(x)(G(x+h)-G(x))}{G(x+h) G(x)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{G(x)(F(x+h)-F(x)}{h}-\frac{F(x)(G(x+h)-G(x)}{h}}{G(x+h) G(x)} \\
& =\quad G(x) \overbrace{\lim _{h \rightarrow 0} \frac{(F(x+h)-F(x))}{h}}^{F^{\prime}(x)} \overbrace{F(x)}^{\lim _{h \rightarrow 0} \frac{(G(x+h)-G(x))}{h}} \overbrace{h}^{G^{\prime}(x)} \\
& a \frac{b-c}{d}=\frac{a b-a c}{d} \\
& =\frac{\lim _{h \rightarrow 0}\left(G(x+h) G(x) \frac{h}{h \rightarrow 0} \lim _{h \rightarrow 0}\right)}{(G(x))^{2}}
\end{aligned}
$$

Remember

$$
\left(\frac{H_{i}}{L_{0}}\right)^{\prime}=\frac{L_{0} \cdot d H_{i}-H_{i} d L_{0}}{L_{0} L_{0}}
$$

Ex.

$$
\sqrt{x}=x^{\frac{1}{2}} \xrightarrow{d / d x} \frac{1}{a} x^{-1 / 2}
$$

$$
f(x)=\frac{x+3}{\sqrt{x}}
$$

$$
f^{\prime}(x)=\frac{\sqrt{x} \cdot 1-(x+3) \cdot \frac{1}{2} x^{\frac{-1}{2}}}{(\sqrt{x})^{2}}=\frac{\sqrt{x}-\frac{x+3}{2 \sqrt{x}}}{x}
$$

