Friday - Week 6

1. Exam study guide up
2. Derivative Chart - Draft \# 1

- 3. Implicit Differentiation
a. $\ln (x)$
b. inverse trig
c. $x^{\wedge} x$

Derivative Chart - Draft \#1

$$
u=f(x)
$$

Functions	Denvatixs
$u^{n}(n \in \mathbb{R})$	$n \cdot u^{n-1} \cdot \frac{d u}{d x}$
$\sin (u)$	$\cos (u) \cdot \frac{d u}{d x}$
$\cos (u)$	$-\sin (u) \frac{d u}{d x}$
$\tan (u)$	$-\sec ^{2}(u) \frac{d u}{d x}$
$\csc (u)$	$\sec (u) \tan (u) \frac{d u}{d x}$
$\sec (u)$	$-\csc ^{2}(u) \frac{d u}{d x}$
$\cot (u)$	$e^{u} \cdot \frac{d u}{d x}$
e^{u}	

Functions	Dennatives
$\ln (u)$	$\frac{1}{\sin ^{-1}(u)} \cdot \frac{d u}{d x}$
$\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$	

Implicit Differentiations
(chain rule) $\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x} \rightarrow$ deriv. in site L deriv, outside

Notation:

$$
\frac{d y}{d x}=y^{\prime}-\text { "y-prome" }
$$

- deriv, of y wat. x

To find $\frac{d y}{d x}$, realize: $\frac{d y}{d x}=\frac{d}{d x} y \quad \sum_{1}^{1} \quad \frac{d}{d x}(x)=\frac{d x}{d x}=1$

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& \int_{\text {apply } \frac{d}{d x}}^{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=\underbrace{\frac{d}{d x}}(1) \\
& 2 x+2 y \cdot y^{\prime}
\end{aligned}
$$

w/ regards to chart

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right)=2 x \cdot \frac{d x}{d x}=2 x \\
& \frac{d}{d x}\left(y^{2}\right)=2 y \cdot \frac{d y}{d x}=2 y \cdot y^{\prime}
\end{aligned}
$$

get a y' multiplied whenever the variable DOES NOT MATCH the what your taking the derivative with respect to solve for y^{\prime}

$$
2 y y^{\prime}=-\partial x \quad \Longrightarrow \quad y^{\prime}=\frac{-\partial x}{\partial y}=-\frac{x}{y}
$$

$$
\text { slope }=\frac{d y}{d x} @ \text { given }\left(x_{1}, y_{1}\right)
$$

The derivative of $\ln (x)$

$$
f(x)=\ln (x)
$$

(1) set $y=\ln (x)$
(2) raise both sides as powers of $e . \quad e^{y}=e^{\ln (x)}=x$
(3) use implicit diff to find y^{\prime}.

$$
\frac{d}{d x}\left(e^{y}\right)=\frac{d}{d x}(x)
$$

look@ chart $y \leftrightarrow u$

$$
e^{y} \frac{d y}{d x}=1
$$

'T replace w) y^{\prime} if you wish
(4) |solate $\frac{d y}{d x}=\frac{1}{e^{y}}$
(5) get original van back. (use (1))

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{e^{\ln x}}=\frac{1}{x} \\
& \frac{d y}{d x}=\frac{1}{x}
\end{aligned}
$$

So with chain rule

$$
\frac{d}{d x}(\ln (u))=\underbrace{\frac{d}{d u}(\ln (u))}_{\frac{1}{u}} \cdot \frac{d u}{d x}=\frac{1}{u} \cdot \frac{d u}{d x}
$$

Ex

$$
\begin{aligned}
& E x \\
& y=\ln \left(x^{2}+5\right) \quad u=x^{2}+5 \rightarrow \frac{1}{u} \cdot(\text { devin of } u) \\
& y^{\prime}=\left(\frac{1}{x^{2}+5}\right)(2 x)=\frac{2 x}{x^{2}+5}
\end{aligned}
$$

Ex

$$
\begin{aligned}
& f(x)=\ln (\sin (x)) \\
& f^{\prime}(x)=\frac{1}{\sin (x)} \cdot \cos (x)=\frac{\cos (x)}{\sin (x)}=\cot (x)
\end{aligned}
$$

Tip: It's just U'/ U or derivative over original
EX

$$
\begin{array}{ll}
f(x)=\ln \left(e^{x^{2}}\right)=x^{2} & e^{u} \rightarrow e^{u} \cdot \frac{d u}{d x} \\
J^{2} e^{x^{2}} \cdot 2 x & e^{x^{2}} \rightarrow e^{x^{2}} \cdot 2 x
\end{array}
$$

why is this derivative so simple $\wedge \wedge \wedge \wedge$

The derivative of inverse trig functions:

$$
f(x)=\sin ^{-1}(x)
$$

Recall, $y=\sin (\theta)=y$-cord of point det. be angle θ $=$ height of point @ angle θ.
So

$$
\theta=\sin ^{-1}(y)
$$

thus $\theta=$ angle that gives point of height y.

so $\arcsin (x)$ is just an angle
Follow same process as for $\operatorname{hn}(x)$:
(1) $y=\sin ^{-1}(x)$
(2) $\sin (y)=x$
(3) $\frac{d}{d x} \rightarrow \quad \frac{d}{d x}(\sin (y))=\frac{d}{d x}(x)$ chart

$$
\cos (y) \cdot \frac{d y}{d x}=1
$$

(4) $\frac{d y}{d x}=\frac{1}{\cos (y)}$
(6) $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
(5) get x back in answer relate $\cos (y) w / \sin (y)$, use
(2)

$$
\begin{aligned}
& \cos ^{2}(y)+\sin ^{2}(y)=1 \\
& \cos ^{2}(y)=1-\sin ^{2}(y) \\
& \cos (y)= \pm \sqrt{1-\sin ^{2}(y)}
\end{aligned}
$$

(from the dof'n of $\cos ^{-1}(x$) that here:

$$
\begin{aligned}
\cos (y) & =\sqrt{1-\sin ^{2}(y)} \\
& =\sqrt{1-x^{2}} \quad \text { step } 2
\end{aligned}
$$

So w/ chain rule:

$$
\frac{d}{d x}\left(\sin ^{-1}(u)\right)=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}
$$

