Mon, Wk 6
 \#6 WW

$$
\begin{aligned}
\frac{1}{8} x-\frac{1}{4} & =y \\
x-2 & =8 y \\
& =
\end{aligned}
$$

Get equation for slope of ton. lire, set it ecua to $\frac{1}{8}$, solve,

take derivative $-x+4$

$$
\left.\frac{d}{d x}(y)=\frac{(x+4) \cdot 1-(x-4) \cdot 1}{(x+4)^{2}}=\frac{1}{8}\right\} \begin{aligned}
& 64=(x+4)^{2} \\
& \pm \sqrt{64}=x+4
\end{aligned}
$$

$$
=\frac{8}{(x+4)^{2}}=\frac{1}{8} \quad\left\{\begin{aligned}
\pm \sqrt{64} & =x+4 \\
-4 \pm 8 & =x \quad x \text {-coordinates, each has a coorespondins } y \text {-courd } \\
-12 & =x
\end{aligned} \quad\right. \text { or }
$$

Quotient Rule

$$
\begin{aligned}
& f(x)=\frac{(t+2)\left(4 t^{3}+1\right)}{\left(t^{2}-4\right)(t-1)} \\
& f^{\prime}(x)=\frac{\left(t^{2}-4\right)(t-1)\left[1 \cdot\left(4 t^{3}+1\right)+(t+2)\left(12 t^{2}\right)\right]-(t+2)\left(4 t^{3}+1\right)\left[2 t(t-1)+\left(t^{2}-4\right) \cdot 1\right]}{\left(\left(t^{2}-4\right)(t-1)\right)^{2}} \\
& f(t)=\underbrace{\left(t^{2}+2 t+3\right)}_{\text {first }}(\underbrace{4 t^{-2}+5 t^{-3}}_{\text {second }}) \\
& f^{\prime}(t)=d(\text { first }) \cdot \text { second }+ \text { first. } d(\text { second }) \\
& =\left[2 t^{\downarrow}+2\right]\left[4 t^{-2}+5 t^{-3}\right]+\left[t^{2}+2 t+3\right]\left[-8 t^{-3}-15 t^{-4}\right]
\end{aligned}
$$

121

$$
\frac{d}{d x}(x)=\frac{d x}{d x}=1
$$

Find $\frac{d}{d s}\left(\frac{1}{s+k e^{s}}\right)$
$k=$ constant
-power

- product
- quotient (

$$
-e^{x} \longmapsto e^{x}
$$

$$
=\frac{-\left(1+k e^{s}\right)}{\left(s+k e^{s}\right)}
$$

Chain Rule
Suppose: $F(x)=f(g(x))$
composite function
chain rule tells us
how to $\frac{d}{d x}(F(x))$

I dea:

$$
\begin{aligned}
& F_{\text {eel }} \cdot(\text { Eat (smaller food) }=F(e(s) \\
& \frac{d F}{d s}=\frac{d F}{d e} \cdot \frac{d e}{d s}
\end{aligned}
$$

$$
\underbrace{\frac{d}{d x}(F(G(x))}_{\frac{d F}{d x}}=\underbrace{F^{\prime}(G(x)) \cdot G_{1}^{\prime}(x)}_{\frac{d F}{d G}}
$$

Ex

$$
\begin{aligned}
f(x) & =\left(3 x^{2}+x\right)^{2} \\
f^{\prime}(x) & =\underbrace{2\left(3 x^{2}+x\right.}_{\begin{array}{l}
\text { derivative of the outside } \\
\text { evaluated at the inside }
\end{array}})^{\prime} \cdot(6 x+1) \\
& =(12 x+2)\left(3 x^{2}+x\right)
\end{aligned}
$$

