Thursday - Week 6
$\checkmark 1$. Any questions?
a. speak up or put in chat.
v 2. Derivative of $\tan (x)$
a. and other trig functions
3. Chain Rule motivation
4. Chain Rule examples

Al
For what values of x in $[0,2 \pi]$ does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent? List the values of x below. Separate multiple values with commas.

$$
x=\{2 \pi / 3,4 \pi / 3\}
$$

\square

(1) $f^{\prime}(x)=1+2 \cos x$
$f^{\prime}(x)=1+2 \cos x$
$f^{\prime}(x)=0=1+2 \cos x \Rightarrow \frac{-1}{2}=\cos (x), x=\operatorname{acos}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
look all sol's in $[0,2 \pi] \quad$ get other angel
bu $2 \pi-\frac{2 \pi}{3}=\frac{4 \pi}{3}$
(2) $f^{\prime}(x)=0=1+2 \cos x$

Denvative of $\tan x$

$$
\begin{aligned}
& f(x)=\tan (x) \stackrel{\text { dof'n }}{=} \frac{\sin (x)}{\cos (x)} \quad \text { thg } I D=1 \\
& f^{\prime}(x)=\frac{\cos (x) \cdot \cos (x)-\sin (x)(-\sin (x))}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=\frac{1}{\cos ^{2}(x)} \\
& =\left(\frac{1}{\cos (x)}\right)^{2}=\sec ^{2}(x) \\
& \frac{d}{d x}(\tan (x))=\sec ^{2}(x) \\
& \frac{d}{d x}(\sec (x))=\frac{d}{d x}\left(\frac{1}{\cos (x)}\right) \underset{\text { quotiont }}{-\frac{(-\sin (x)}{\cos ^{2}(x)}} \\
& \sec =\frac{1}{\cos } \\
& \csc =\frac{1}{\sin } \\
& =\frac{\sin (x)}{\cos ^{2}(x)}=\frac{\sin (x)}{\cos (x)} \cdot \frac{1}{\cos (x)} \\
& =\tan (x) \cdot \sec (x) \\
& \frac{d}{d x}(\sec (x))=\sec (x) \tan (x)
\end{aligned}
$$

Same Idea \Rightarrow

$$
\begin{aligned}
\frac{d}{d x}(\csc (x)) & =-\csc (x) \cdot \cot (x) \\
\frac{d}{d x}(\cot (x)) & =\frac{d}{d x}\left(\frac{\cos (x)}{\sin (x)}\right)=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}=-\left(\frac{1}{\sin x}\right)^{2} \\
& =-(\csc (x))^{2} \\
\frac{d}{d x}(\cot (x)) & =-\csc ^{2} x
\end{aligned}
$$

Motivation for chain Rule
If person a walks twice as fast as person b
$\frac{1}{a}$ person b walks 3 times as fast as person c How much factor dies a walk than $\subseteq 6$ tires factor.

$$
\begin{aligned}
& \underline{a}: \frac{d a}{d b}=2 \\
& \underline{b} \cdot \frac{d b}{d c}=3
\end{aligned}
$$

Question: $\quad \frac{d a}{d c}=\frac{d a^{2}}{d b} \cdot \frac{d b}{d c}=3=6$
a = amount of water (volume) in receptacle.

$$
\frac{d u}{d a}=3 \frac{\mathrm{in}}{a_{n} t}
$$

$\frac{d h}{d a}=$ change in height given charge in volume $\approx 4.5 \frac{\text { inches }}{\text { amount }}$

$$
\frac{d h}{d t}=\frac{d h}{d a} \cdot \frac{d a}{d t}
$$

See Notes Page

Derivative Exercises

- Power Rule I Solutions
- Product Rule I Solutions
- Chain Rule - Powers I Solutions
- Chain Rule - Trig I Solutions
- Chain Rule - Exponential \& Logs I Solutions
- Chain Rule - Inverse Trig I Solutions

$$
\begin{array}{ll:l}
& \text { lows } \\
f(x)=\left(\frac{1}{x}+5 x^{2}+1\right)^{3} & \text { Idea } \\
f^{\prime}(x)=3\left(\frac{1}{x}+5 x^{2}+1\right)^{2}:\left(-\frac{1}{x^{z}}+10 x\right) & \frac{d}{d x}\left(u^{n}\right)=n \cdot u^{n-1} \cdot \frac{d u}{d x}
\end{array}
$$

chain rule.
identify inside $\frac{1}{a}$ outside
'often between parenthesis

$$
\begin{array}{ll}
f(x)=\left(\frac{x+1}{x-1}\right)^{2} \quad \text { think } u=\frac{x+1}{x-1} & \text { then } \quad \begin{array}{ll}
f=u^{2} \\
f^{\prime}(x)=2\left(\frac{x+1}{x-1}\right)^{\prime} \cdot\left(\frac{x-1-(x+1}{(x-1)^{2}}\right) & \frac{d f}{d x}=2 u^{\prime} \cdot \frac{d u}{d x}
\end{array}
\end{array}
$$

quotient rube

$$
=\frac{-4(x+1)}{(x-1)^{3}}
$$

TRIG-CHAIN RULE.

$$
f(x)=\cos ^{2}(x)=(\cos (x))^{2}=u^{2} \ldots 2 \cdot 2 u \cdot \frac{d u}{d x}
$$

Key: figure out what the inside function is $(u=\cos x)$

$$
\begin{aligned}
f^{\prime}(x) & =2(\cos (x)) \cdot(-\sin x) \\
& =-2 \cos x \cdot \sin x
\end{aligned}
$$

$$
g(x)=\cos (\partial x) \text { inside: } n=2 x \ldots \rightarrow \frac{d}{d x}(\cos (u))=-\sin (u) \cdot \frac{d u}{d x}
$$

$$
g^{\prime}(x)=-\sin (2 x) \cdot 2=-2 \sin (2 x)
$$

