

MA161-Exam 2 -Guide Name: \qquad

Find $f^{\prime}(x)$.
power

1. $f(x)=\frac{5}{\sqrt{x}}=5 x^{-1 / 2}, f^{\prime}(x)=\frac{-5}{2} x^{-3 / 2}$
$e^{e^{u}} x=b$ ace $(\Rightarrow$ power still works for irrationd exponents where?
is x ?
2. $f(x)=e^{2}-e^{x}+x^{e^{\prime}}$
produce Ct 3. $f(x)=x^{2} \sin x$

$$
f^{\prime}(x)=2 x \cdot \sin (x)+x^{2} \cos (x)
$$

piece by piece
4. $f(x)=4 e^{-x}+\cos x-9 \ln x$

$$
f^{\prime}(x)=-4 e^{-x}-\sin (x)-\frac{9}{x}
$$

6. (a) Find the slope of the tangent line to the graph of $y=\cos (x)$ at $\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$.
plan: take deriv, plus in $x=\pi / 4$

$$
\begin{aligned}
& y^{\prime}=-\sin (x) \\
& y^{\prime}(\pi / 4)=-\frac{\sqrt{2}}{2} \approx-.7
\end{aligned}
$$

(b) Find the slope of the tangent line to the graph of $y=\cos ^{-1}(x)$ at $\left(\frac{\sqrt{2}}{2}, \frac{\pi}{4}\right)$. same problem, same plan

$$
y^{\prime}=\frac{-1}{\sqrt{1-x^{2}}}, y^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{-1}{\sqrt{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}}=\frac{-1}{\sqrt{1-\frac{2}{4}}}=\frac{-1}{\sqrt{1 / 2}}=\frac{-1}{\left(\frac{1}{\sqrt{2}}\right)}=-\sqrt{2}
$$

(c) Show that the answers to (a) and (b) are multiplicative inverses of each other.
(Hint: Show $\frac{1}{(\mathrm{a})}=(\mathrm{b})$ or $(\mathrm{a})(\mathrm{b})=1$.)

e^{n}
8. $f(x)=e^{\sec ^{3} x}$

$$
e^{\sec ^{\sec ^{3} x}(x)} \cdot \underbrace{3 \cdot \sec ^{3}(x) \cdot \tan x}_{\text {danu }+\sec ^{3}(x)}=3 \sec ^{3}(x) \tan (x) e^{\sec ^{3}(x)}
$$

$$
\begin{aligned}
& \begin{array}{l}
x^{3} \cdot \frac{1}{\cos }= \\
\text { 9.f(x) }=\frac{x^{3}}{\cos x}
\end{array}=x^{3} \cdot \sec (x) \quad f^{\prime}(x)=3 x^{2} \cdot \sec (x)+x^{3} \cdot \sec (x) \tan (x)
\end{aligned}
$$

quotient product

$$
\frac{\cos (x) \cdot 3 x^{2}+x^{3} \sin (x)}{\cos ^{2}(x)} \text { or } \hat{\jmath}
$$

$$
\underbrace{10 . f(x)=\sin ^{-1}\left(x^{3}\right)}_{\sqrt{\operatorname{rrcsin}}} \frac{1}{\sqrt{1-\left(x^{3}\right)^{2}}}-3 x^{2}=\sqrt{\sqrt{1-x^{6}}}
$$

$$
\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}
$$

$$
\begin{aligned}
& \text { Forget } \left.\begin{array}{c}
777 \\
\text { der } \sec (x)
\end{array} \rightarrow \sec (x)=\frac{1}{\cos (x)} \text { use quotient }\right\} \begin{array}{c}
\cos x \cdot(0)-1 \cdot(-\sin (x)) \\
\cos ^{2}(x)
\end{array}=\frac{\sin x}{\cos ^{2} x} \\
& \text { MA161 - Exam 2-Guide Page } 2 \text { of } 4 \\
& \text { October 6, 2023 }=\frac{\sin }{\cos } \cdot \frac{1}{\cos } \\
& 90 \% \text { correct } \\
& =3 \sec ^{3}(x) \tan (x)
\end{aligned}
$$

$a^{n} \cdot \frac{d u}{d x} \cdot \ln (a) \quad c \cdot a^{n} \quad x$ is in exponent
11. Use derivatives to determine which curve is steeper at $x=0, f(x)=2^{3 x+1}$ or $g(x)=3^{2 x+1}$.
steeper $=$ slope wi highest absivalue
of denvative $\rho x=0$

$$
\left.\begin{array}{rl}
f^{\prime}(x)=2^{3 x+1} \cdot 3 \cdot \ln (2), f^{\prime}(0)=2 \cdot 3 \cdot \ln (2)=6 \cdot \ln 2 \\
g^{\prime}(x)=3^{2 x+1} \cdot 2 \cdot \ln (3), g^{\prime}(0)=3 \cdot 2 \cdot \ln (3)=6 \cdot \ln 3 \\
\text { ANS: } g(x) \text { is STeeper } & \text { bis ser }
\end{array}\right]
$$

12. $f(x)=\sqrt{x^{2}-1}$
power $=\left(x^{2}-1\right)^{1 / 2}$
ANS: $g(x)$ is steeper

$$
\begin{aligned}
& =\left(x^{2}-1\right) \quad-1 / 2 \\
& f^{\prime}(x)=\frac{1}{2}\left(x^{2}-1\right)-(2 x)=\left(x^{2}-1\right)^{-1 / 2}=\sqrt{\frac{x}{\sqrt{x^{2}-1}}}
\end{aligned}
$$

$\ln (n)$

$$
f^{\prime}(x)=\frac{1}{\cos (x)} \cdot(-\sin (x))=\frac{-\sin (x)}{\cos (x)}=-\tan (x)
$$

Recall: $\left[y-y_{1}=m^{\text {slope }}\left(x-x_{1}\right)\right.$ eq of line plus x_{1} giver $\left(x_{1}, y_{1}\right)$ known \#'s into onsinal given (x, y) variables

$$
\text { Ans: } y-\ln \left(\frac{\sqrt{2}}{2}\right)=-1\left(x-\frac{\pi}{4}\right)
$$

14. Find the equation of the tangent line to $f(x)=\ln (\cos x)$ at $x=\frac{\pi}{4}$.

Need two ingredients' point, slope
(we see "tangent"

$$
x_{1}=\text { given }=\frac{\pi}{4}
$$

\Rightarrow take derv, plus
$y_{1}=\operatorname{sub} x=\frac{\pi}{4}$ into origins
slope $f^{\prime}(x)=\frac{1}{\cos (x)} \cdot(-\sin (x))=\frac{-\sin x}{\cos x}=-\tan x$
wed $\underline{\ln (u)}$ denvative $\left(\frac{1}{u}, \frac{d u}{d x}\right)$
point

$$
\begin{aligned}
y_{1} & =\ln (\cos (\pi / 4) \\
& =\ln \left(\frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

$$
f^{\prime}(\pi / 4)=-\tan (\pi / 4)=-1
$$

16. $f(x)=x^{2 x}$
hit w/ \log algorith
(1) $y=x^{2 x}$
(2) $\ln (y)=\ln \left(x^{2 x}\right)=2 x \cdot \ln (x)$
(4) $y^{\prime}=2(\ln (x)+1) \cdot y$
(3) $\frac{1}{y} \cdot y^{\prime}=2 \cdot \ln (x)+2 x\left(\frac{1}{x}\right)=2(\ln (x)+1)$

$$
(x-h)^{2}+(y-k)^{2}=1
$$

17. Find all points (x, y) where the curve $(x-1)^{2}+(y-1)^{2}=1$ has a horizontal tangent. Bonus: sketch a graph of the curve and its horizontal tangents.
$\underbrace{\text { set }=0}_{\text {plan: , take deriv, (I) }}$ (

$$
\begin{aligned}
\frac{d}{d x}\left[(x-1)^{2}+(y-1)^{2}\right] & =\frac{d}{d x}[1] \\
2(x-1)+2(y-1)-y^{\prime} & =0
\end{aligned}
$$

Solve fo (1) $y^{\prime} 2(y-1) y^{\prime}=-2(x-1)$
(2)

$$
\begin{aligned}
& y^{\prime}=\frac{-2(x-1)}{2(y-1)}=\frac{-(x-1)}{y-1}=\frac{1-x}{y-1} \\
& \text { this is the deriv. }
\end{aligned}
$$

(II) Now $y^{\prime}=0$

$$
\begin{array}{rc}
\frac{1-x}{y-1}=0 & \begin{array}{c}
\text { cross } \\
\text { malt, }
\end{array} \\
& \text { so } \quad 1-x=0 \cdot(y-1)=0 \\
& x=1
\end{array}
$$

To find all point (x, y) sub $x=1$ into ongind

$$
\begin{array}{c|r}
(x-1)^{2}+(y-1)^{2}=1 & \text { sa. root } \Rightarrow \begin{array}{r}
y-1= \pm \sqrt{1}= \pm 1 \\
y-1=1, y=2 \\
0 r \\
0+(y-1)^{2}=1
\end{array} \\
y-1=-1, y=0
\end{array}
$$

$$
x=1 \Rightarrow \quad \infty+(y-1)^{2}=1
$$

Bonus: circle, radius $=1$, center $=(1,1)$

