Derivative Chart - Draft \#1

$$
u=f(x)
$$

Functions	Denvatixes
$u^{n}(n \in \mathbb{R})$	$n \cdot u^{n-1} \cdot \frac{d u}{d x}$
$\sin (u)$	$\cos (u) \cdot \frac{d u}{d x}$
$\cos (u)$	$-\sin (u) \frac{d u}{d x}$
$\tan (u)$	$-\sec ^{2}(u) \frac{d u}{d x}$
$\csc (u)$	$-\sec ^{(u)}(u) \tan (u) \frac{d u}{d x}$
$\sec (u)$	$-\csc ^{2}(u) \frac{d u}{d x}$
$\cot (u)$	$e^{u} \cdot \frac{d u}{d x}$
e^{u}	

Functions	Dennatives
$\ln (u)$	$\frac{1}{u} \cdot \frac{d u}{d x}$
$\sin ^{-1}(u)$	$\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$
a^{u}	$a^{u} \cdot \frac{d u}{d x} \cdot \ln (a)$

$$
\begin{aligned}
& e^{2 x} \xrightarrow{d / d x} e^{2 x} \cdot 2 \\
& 5^{2 x} \xrightarrow{d / d x} 5^{2 x} 2 \cdot \ln (5)
\end{aligned}
$$

BCC set
(1) hit w/ ln

$$
w \mid a \in \mathbb{R}^{+}
$$

(2)

$$
\begin{aligned}
\frac{d}{d x}(\ln (y)) & =\frac{d}{d x}(x \cdot \ln (a)) \\
\frac{1}{y} \cdot y^{\prime} & =\ln (a) \\
y^{\prime} & =y \cdot \ln (a)=a^{x} \cdot \ln (a)
\end{aligned}
$$

$$
\begin{gathered}
\left.\left.\frac{d}{d x} \right\rvert\, a^{\prime x}\right)=a^{x} \cdot \ln (a) \\
d \\
\frac{d}{d x}\left(a^{u}\right)=a^{u} \cdot \frac{d u}{d x} \cdot \ln (a)
\end{gathered}
$$

MA161 - Exam 2 -Guide
February 23, 2024
Show your work!

Find $f^{\prime}(x)$.

1. $f(x)=\frac{5}{\sqrt{x}}=5 x^{-1 / 2}$

Name: \qquad
power \sqrt{x}

2. $f(x)=e^{2}-e^{x}+x^{e}$ power

$$
f^{\prime}(x)=-e^{x}+e x^{e-1}
$$

3. $f(x)=x^{2} \sin x$
product
4. $f(x)=4 e^{-x}+\cos x-9 \ln x$

$$
\uparrow_{\text {chain }}
$$

5. $f(x)=\left(2 x^{4}-3 e^{2 x}+\tan x\right)^{7} \approx u^{7} \longrightarrow 7 u^{6} \frac{d u}{d x}$ power

$$
7\left(2 x^{4}-3 e^{2 x}+\tan x\right)^{6} \cdot\left(8 x^{3}-6 e^{2 x}+\sec ^{2} x\right)
$$

6. (a) Find the slope of the tangent line to the graph of $y=\cos (x)$ at $\left(\frac{\pi}{4}, \frac{\sqrt{2}}{2}\right)$.

Related
$f_{0}(x)=\frac{x+x^{2}}{\sqrt{x}}=x^{\frac{1}{2}}+x^{3 / 2}$
algebra $1^{\text {st }}$
$f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}+\frac{3}{2} x^{\frac{1}{2}}$
$f(x)=\frac{x(1+\partial x)-\left(x+x^{2}, \frac{1}{2} x^{-1 / 2}\right.}{x}$
(b) Find the slope of the tangent line to the graph of $y=\cos ^{-1}(x)$ at $\left(\frac{\sqrt{2}}{2}, \frac{\pi}{4}\right)$.
(c) Show that the answers to (a) and (b) are multiplicative inverses of each other. (Hint: Show $\frac{1}{(\mathrm{a})}=(\mathrm{b})$ or $(\mathrm{a})(\mathrm{b})=1$.)

DM Chort

u^{n}	$n u^{n-1} \frac{d u}{d x}$
$\sin (u)$	$\cos (u) \frac{d u}{d x}$
$\cos (u)$	$-\sin (u) \frac{d u}{d x}$
$\cot (u)$	$-\csc (u) \cot (u) \frac{d u}{d x}$
$\tan (u)$	$-\csc ^{2}(u) \frac{d u}{d x}$
e^{u}	$\sec ^{2}(u) \frac{d u}{d x}$
$e^{u} \frac{d u}{d x}$	

$\ln (b l a h)$	$\frac{1}{b 1 a h} \cdot \frac{d(b \mid c h)}{d x}$
$\sin ^{-1}(u)$	$\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$
a^{u}	$a^{u} \frac{d u}{d x} \ln (a)$

7. $f(x)=\sec ^{3} x$
8. $f(x)=e^{\sec ^{3} x}$
9. $f(x)=\frac{x^{3}}{\cos x}$
10. $f(x)=\sin ^{-1}\left(x^{3}\right)$

$$
2^{3 x+1}=2^{3 x+1} \cdot 3 \cdot \ln (2)
$$

MA161 - Exam 2 -Guide

$$
a^{u} \longrightarrow a^{u} \cdot \frac{d u}{d x} \cdot \ln (a)
$$

Page 3 of ??
11. Use derivatives to determine which curve is steeper at $x=0, f(x)=2^{3 x+1}$ or $g(x)=3^{2 x+1}$.

Steeper $=$ most extreme slope
\& largest

$$
f^{\prime}(x)=2^{3 x+1} \cdot 3 \cdot \ln (2), f^{\prime}(0)=2^{3 \cdot \theta+1} \cdot 3 \cdot \ln (2)=6 \cdot \ln (2)
$$

derivative

$$
g^{\prime}(x)=3^{2 x+1} \cdot 2 \cdot \ln (3), g^{\prime}(0)=3^{2 \cdot 0+1} \cdot 2 \cdot \ln (3)=6 \cdot \ln (3)
$$

12. $f(x)=\sqrt{x^{2}-1}$

$$
\begin{gathered}
\text { steeper } \\
\text { curve }
\end{gathered}=g(x)
$$

power
13. $f(x)=\ln (\cos x)$

$$
f^{\prime}(x)=\frac{1}{\cos (x)} \cdot\left(-\sin (x)=-\frac{\sin (x)}{\cos (x)}=-\tan (x)\right.
$$

14. Find the equation of the tangent line to $f(x)=\ln (\cos x)$ at $x=\frac{\pi}{4}$.

$$
\begin{aligned}
& \text { slope }=f^{\prime}(\pi / 4) \\
& \text { point }=\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)
\end{aligned}
$$

15. $f(x)=\csc (2 x)$
16. $f(x)=x^{2 x}$

17. Find all points (x, y) where the curve $(x-1)^{2}+(y-1)^{2}=1$ has a horizontal tangent. Bonus:
goal: sketch a graph of the curve and its horizontal tangents.
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$
 set $=0$
solve
(1) $\frac{d}{d x}$ to both sides $\frac{d}{d x}\left(\begin{array}{c}\left.(x-1)^{2}+(y-1)^{2}\right)\end{array}\right)=\underbrace{\frac{d}{d x}(1)}_{=0}$
(2) $2(x-1)^{\prime} \cdot 1+2(y-1)^{\prime}-y^{\prime}=0=0$
(3) (solute y^{\prime} y $=\frac{-2(x-1)}{2(y-1)}=\frac{-(x-1)}{(y-1)}=0$ (take deriv), now set $=0$
(4) $\frac{-(x-1)}{y-1}=0=\frac{0}{1} \Rightarrow-(x-1)=0$
choss-mull

$$
(1,0),(1,2)
$$

(5) Plus $x=1$ into origin $d \Rightarrow \quad(x-1)^{2}+(y-1)^{2}=1 \Rightarrow \quad \begin{array}{r}(y-1)^{2}=1 \quad y=1+1=0 \\ y-1=x 1\end{array} \quad \begin{aligned} & y=1\end{aligned}$

Horizontal tangent Problem
Find where the graph has a horme tangent.

$$
\begin{aligned}
& f(x)=x^{4}-16 \\
& f^{\prime}(x)=4 x^{3} \\
& \text { set }=0 \quad 4 x^{3}=0
\end{aligned}
$$

(1) take deriv.
(2) set $=0$

solve $x=0$ the x-value that makes the tangent honzontal
get the corresponding y.

$$
(0,-16)
$$

$$
f(0)=0^{4}-16=-16
$$

$f^{\prime}(x)=4 x^{3}=1 \Rightarrow x=\sqrt[3]{1 / 4}$, get y bs plussing into

$$
\approx(\sqrt[3]{1 / 4},-12) \quad y=f\left(\sqrt[3]{1}(4)=(1 / 4)^{4 / 3}-16 \approx-12\right.
$$

