MA 161

1. Initial anti-derivative chart v. What is dx ?
a. differentials
2. Initial value example
3. u-substitution example
\qquad

Function

($m=$ constant)
kick the exponent up by one and divide by it
Differentials

$$
\begin{aligned}
& \uparrow_{h}=\Delta x \text { small }_{\text {change }} \text { in } x \\
& \frac{\Delta x}{\Delta y}=\text { slope ar secant line slope } \\
& \frac{d y}{d x}=\text { slope of tansect line }=f^{\prime}(x)
\end{aligned}
$$

The point of this discussion is this: both dx and dy are "real", "physical" quantities (heights and widths) that can be multiplied and divided.

Let $f(t)=$ height of

Suppose you drop a tomato from 100 feet above the ground. tomato@ time,
How long does it take to hit the ground? $\begin{aligned} & \text { Need formula } \\ & \text { for }\end{aligned}$
How fast is it traveling upon impact? $\}$ for height.
(1) $f^{\prime}(t)=\int f^{\prime \prime}(t) d t=\int-32 d t=-32 t+C$
(2) INv. $s(0)=100$ (not ready to we yet)
\Rightarrow only Force acting is
(A) $f^{\prime}(0)=0$ (we dropped it, it) which acts ar instead of thrown it)

$$
\text { Drop } \Rightarrow \text { Release }
$$

\Rightarrow only Force gravity,

$$
f(0)=100 \mathrm{ft}
$$ accellevation by

$1 . e_{1}$, if wed thrown dow (a $10 \mathrm{ft} / \mathrm{s}$,

$$
-328 t / s^{2}=f^{\prime \prime}(t)
$$

if we throw it up (a $20 \mathrm{ft} / \mathrm{s}$,

$$
\begin{gathered}
f^{\prime}(0)=20 \\
f_{\substack{11 \\
0}}^{\prime}(0)=-32(0)+c \Rightarrow c=0
\end{gathered}
$$

(3) Update: $f^{\prime}(t)=-32 t$
(4) $f(t)=\int f^{\prime}(t) d t=\int-32 t d t=-\frac{32 t^{2}}{2}+c=-16 t^{2}+c$
(5) INv. $f(0)=100=-16(0)^{2}+C, c=100$
(6) $f(x)=-16 t^{2}+100$ position
(7) How long till it hits ground? Set $\mathrm{f}(\mathrm{x})=0$, solve.

$$
-16 t^{2}+100=0 / t=\frac{10}{4}=0.5 \text { seconds }
$$

(8) It takes 2.5 seconds till impact. Sub 2.5 into velocity function, you get how fast it's going at $2.5 \quad f^{\prime}(2.5)=-32(2.5)=-80 \mathrm{ft} / \mathrm{sec}$ seconds.

$$
\begin{aligned}
& \text { u-sub example } \\
& \int(\underbrace{3 x+1})^{5} d x=\text { doesn't look like chart ... } \\
& \int x^{m}{\underset{\sim}{l}}_{d x}^{d x}=\frac{x^{m+1}}{m+1}+c
\end{aligned}
$$

(1) Set $u=3 x+1$

$$
\frac{d u}{d x}=3=\frac{3}{1}
$$

(2) Isolate $d x$

$$
\begin{aligned}
& 1 \cdot d u=3 \cdot d x \\
& \frac{1}{3} d u=d x
\end{aligned}
$$

(3) Recopy original w/ u and $d x$ subbed in:

$$
\int(u)^{5} \frac{1}{3} d u=\int u^{5} \cdot \frac{1}{3} d u=\frac{1}{3} \int u^{5} d u=\frac{1}{3} \cdot \frac{u^{6}}{6}+c=\frac{u^{6}}{18}+c
$$

(4) get x back

$$
F(x)=\frac{(3 x+1)^{6}}{18}+C \left\lvert\, \begin{array}{l|l}
\text { check: } \\
\frac{d f}{d x} & =\frac{6(3 x+1)^{5}}{18} \cdot 3=(3 x+1)^{5}
\end{array}\right.
$$

Silightly more compliz dal u-suh

$$
\begin{aligned}
& \int x\left(x^{2}+3\right)^{5} d x \xlongequal{\text { think } \int u^{m} d u} \\
& \text { (1) } u=x^{2}+3 \\
& \frac{d u}{d x}=\partial x
\end{aligned} \begin{aligned}
& \text { () 1solate } d x \\
& d u=\partial x d x \\
& \frac{1}{2 x} \cdot d u=d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}(a n s) \\
& \frac{1}{12} \cdot 6\left(x^{2}+3\right) \cdot 2 x \\
& =\left(x^{2}+3\right)^{5} \cdot x
\end{aligned}
$$

(II)
$\stackrel{\operatorname{sub}}{=} \int X \cdot(u)^{5} \frac{1}{2 x} \cdot d u=\frac{1}{2} \int u^{5} d u=\frac{1}{6} \frac{1}{2} u^{6}=\frac{u^{6}}{12}+c$

$$
=\frac{1}{12}\left(x^{2}+3\right)^{6}+c
$$

