MA 161

- 1. Initial anti-derivative chart
- ▼2. What is dx?
 - a. differentials
 - 3. Initial value example
 - 4. u-substitution example

Initial	Anti-Derivative Chart-	
function	Anti-Derivative	
Xm	$\frac{X^{m+1}}{m+1} + C$	$\begin{pmatrix} & m &= & c \\ & kick the exponent up by \end{pmatrix}$
e×	$e^{\star} + c$	
$\frac{1}{X}$	$l_{x} x + C$	
sin(x)	$-\cos(x) + C$	
(x)	Sin(x) + C	
sec (X)	$+\alpha n(x) + C$	
$\frac{1}{1+\chi^2}$	$\tan^{-1}(x) + C$	
$\frac{1}{ \chi \sqrt{ \chi^2- }}$	$sec^{-1}(x) + c$	
$\frac{1}{\sqrt{1-\chi^2}}$	$sin^{l}(X) + C$	
(X)	$-\cot(x)+C$	
sec (x) tan(x)	52((x) + C	

constent

one and divide by it

The point of this discussion is this: both dx and dy are "real", "physical" quantities (heights and widths) that can be multiplied and divided.

