MA161 - Exam 2-
Name: \qquad
February 29, 2024
Show your work!

Find $f^{\prime}(x)$.

1. $f(x)=\ln 4+e^{4}$

$$
f^{\prime}(x)=0
$$

2. $f(x)=-\pi x$

$$
-\pi
$$

3. $f(x)=4 e^{-x}+\tan x+16 \ln x$

$$
-4 e^{-x}+\sec ^{2}(x)+\frac{16}{x}
$$

4. $f(x)=\left(4 x^{7}-5 e^{4 x}+\cos x\right)^{8}$

$$
8\left(4 x^{7}-5 e^{4 x}+\cos x\right)\left(28 x^{7}-20 e^{4 x}-\sin (x)\right)
$$

5. $f(x)=(\ln x)^{6}$

$$
\frac{6(\ln x)^{5}}{x}
$$

6. $f(x)=\frac{x+3 x^{2}+4 \sqrt{x}}{\sqrt{x}}$

Hint: Algebra first. $\quad \frac{1 \text { dead }}{2} \quad \frac{4+10}{2}=\frac{4}{2}+\frac{10}{2}=7$

$$
\frac{3 x^{2}}{x^{1 / 2}}=3 x^{2} \cdot x^{-\frac{1}{2}} x^{\frac{1}{2}}+3 x^{\frac{3}{2}}+4 \rightarrow f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}+\frac{9}{2} x^{\frac{1}{2}}
$$

7. $f(x)=x^{6} \sec x$
product

$$
6 x^{5} \cdot \sec (x)+x^{6} \sec (x) \tan (x)
$$

MA161 - Exam 2 - Guide
8. $f(x)=e^{\cos ^{2} x}=e^{\cos (x)}=e^{(\cos (x))^{2}} \quad$ think: $e^{a} \rightarrow e^{u} \cdot \frac{d u}{d x}$
$\operatorname{set} u=(\cos (x))^{2}$

$$
w^{2} \rightarrow 2 w \cdot \frac{d w}{d x}
$$

$$
\frac{d u}{d x}=2 \cos (x)(-\sin (x))
$$

先

$$
-2 e^{\cos ^{2}(x)}(\cos (x) \sin (x))
$$

9. $f(x)=\ln \left(\cos ^{2} x\right)$
¡think

$$
\ln (u) \longrightarrow \frac{1}{u} \cdot \frac{d u}{d x}
$$

$$
\begin{gathered}
i u=\cos ^{2} x \\
\frac{d u}{d x}=i
\end{gathered}
$$

$$
\frac{-1}{\cos ^{2}(x)} 2 \cos (x) \sin (x)=\frac{-2 \sin (x)}{\cos (x)}
$$

$$
=-2 \tan (x)
$$

10. $f(x)=x^{5} \sin ^{-1} x$

$$
\begin{aligned}
& 5 x^{4} \sin ^{-1} x+x^{5}\left(\frac{d \sin ^{-1} x}{d x}\right) \\
& 5 x^{4} \sin ^{-1} x+x^{5}\left(\frac{1}{\sqrt{1-x^{2}}}\right)
\end{aligned}
$$

11. $f(x)=\sin ^{-1}\left(x^{4}\right)$

$$
\begin{aligned}
& \sin ^{-1}(u) \rightarrow \frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x} \\
& u=x^{4} \frac{1}{s u b} \\
& \frac{d u}{d x}=4 x^{3} \quad 9
\end{aligned}
$$

At a time t seconds after it is thrown up in the air, a tomato is at a height (in meters) of

$$
f(t)=-4.9 t^{2}+55 t+1
$$

(a) Find the instantaneous velocity of the tomato at time $t=1$ (include units!)

$$
\begin{aligned}
& f^{\prime}(t)=-9.8 t+55 \\
& f^{\prime}(1) \approx 45 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

(b) Is the tomato going up or coming down at time $t=4$? (justify your answer)

Is $f^{\prime}(t)>0$ when $t=4$

$$
f^{\prime}(4)=-4(9.8)+5 s>0 \Rightarrow \text { up }
$$

(c) How high does the tomato go?
peak will occur when $f^{\prime}(t)=0$

$$
\left.f^{\prime}(t)=-9.8 t+55=0 \quad\right\} \quad \begin{aligned}
& \text { plus this into height foch i } \\
& 0 / 5.6)=-4.9(5.6)^{2}+55 / 5.6
\end{aligned}
$$

$$
\left.t=\frac{55}{9.8} \approx 5.6\right\}
$$

$$
\begin{aligned}
f(5.6) & =-4.9(5.6)^{2}+55(5.6)+1 \\
& =155 \mathrm{~m}
\end{aligned}
$$

12. $f(x)=\sqrt{x^{2}-1}$

$$
\begin{aligned}
& =\left(x^{2}-1\right)^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2}\left(x^{2}-1\right)^{-\frac{1}{2}}(2 x)=x\left(x^{2}-1\right)^{\frac{1}{2}}=\frac{x}{\sqrt{x^{2}-1}}
\end{aligned}
$$

13. $f(x)=\ln (\ln x)$
think: $\ln (u) \rightarrow \frac{1}{u} \cdot \frac{d u}{d x}=\frac{1}{\ln (x)} \cdot \frac{1}{x}$

$$
\begin{aligned}
& n=\ln (x) \quad \text { sub } \\
& \frac{d \mu}{d x}=\frac{1}{x}
\end{aligned} \quad=\frac{1}{1 / n}
$$

16. There are two tangent lines to the curve $x^{2}+x y=1$ that have slope equal to -2 . Find equations for them. product
Find $y^{\prime} \underset{\text { Diff }}{\operatorname{lmplicut}:} 2 x+1 \cdot y+x \cdot y^{\prime}=0$
Isolate y^{\prime}
$\operatorname{set}=-2$

$$
\begin{aligned}
& y^{\prime}=\frac{-2 x-y}{x}=-2 \\
& \text { slope }
\end{aligned}
$$

coos mint
points:
Slope: $m=-2$

$$
-2 x-y=-2 x
$$

$(1,0),(-1,0)$

$$
y=0
$$

$$
\begin{gathered}
y-y_{1}=-2(x-1) \\
y=-2(x-1)
\end{gathered}
$$

17. I tell my friends this class \qquad
