MHIll wh 8 wed

MA 161
v1. Wednesday
a. anti-derivatives

V2. Țhursday
a. anti-derivatives
v. Friday
a. video lecture online

Anti-Denvalure

$$
\int \underset{\substack{\text { varables match }}}{f(x) d x}=F(x) \text { means } \frac{d}{d x}(F(x))=f(x)
$$

Ex

$$
\int 3 x^{2} d x=\stackrel{211}{c^{2}}{ }^{5}
$$

$$
=x^{3}+c \quad(C \text { is some arbitrans constant) }
$$

Ex $\int e^{x} d x=e^{x}+C$ Ex $\int \sin (x) d x=-\cos x+C$

Ex $\int \cos x d x=\sin x+C \quad E_{x} \int \frac{1}{x} d x=\ln |x|+C$
Ex $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad b / c \frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=\frac{1}{n+1} \cdot(n+1) x^{n+1-1}=x^{n}$

$$
\frac{d}{d x}\left(\frac{x^{5}}{4}\right)=\frac{1}{4} \cdot 5 x^{4}=\frac{5}{4} x^{4}
$$

u- substitution

$$
\begin{aligned}
& \int u^{n} d u \Rightarrow \frac{u^{n+1}}{n+1}+C
\end{aligned}
$$

$$
\begin{aligned}
& =\int u^{2} \frac{1}{3} d u=\int 9 x^{2} d x+\int 6 x d x+\int 1 d x \\
& =\frac{1}{3} \int u^{2} d u=9 \int x^{2} d x+6 \int x^{1} d x+\int 1 d x \\
& \begin{array}{l}
\text { get } \\
\text { x back }
\end{array} \frac{1}{3} \cdot \frac{u^{3}}{3}=\frac{u^{3}}{9}+c \\
& =\frac{(3 x+1)^{3}}{9}+c=\frac{9 x^{3}}{3}+\frac{6 x}{2}+x+c
\end{aligned}
$$

Idea: transform the given problem into an equivalent, but simpler one.
, denvative writ x
Step $2 \quad \frac{d}{d x}$ to both 1 $\frac{d}{d x}(u)=\frac{d^{\prime}}{d x}(3 x+1)$

Step 3

Step 4
$d u=3 d x \quad$ Ste solve for $d x$
cross multi

$$
\begin{aligned}
& \int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x \\
& \int c \cdot f(x) d x=c \int f(x) d x \\
& \begin{aligned}
\frac{d}{d x}\left(5 x^{2} \pm 7 x\right) & =\frac{d}{d x}\left(5 x^{2}\right) \pm \frac{d}{d x}(7 x) \\
& =10 x+7
\end{aligned}
\end{aligned}
$$

$$
\frac{d}{d x}(c f(x))=c \cdot \frac{d}{d x} f(x)
$$

