Thurs. wk a

Integration technique (mining)

$$
\begin{aligned}
& \int x \sqrt{x-1} d x \\
& \operatorname{set} u=x-1 \\
& \frac{d u}{d x}=1, d u=d x
\end{aligned}
$$

$\stackrel{\text { sub }}{=} \int x u^{\frac{1}{2}} d u$
The " x " doesn't cancel, so I "mine" the

$$
\begin{aligned}
& \text { equation above "u }=x-1 \text { " so isolate } x \\
& \sqrt{\|} \sqrt{u+1=x} \\
& =\int(u+1) u^{\frac{1}{2}} d u=\int u^{\frac{3}{2}}+u^{\frac{1}{2}} d u \quad \text { pourer } \\
& =\int \frac{\operatorname{sen}(u) d u}{}
\end{aligned}
$$

think: chart $-\int u^{n} d u \Rightarrow$

$\int \frac{1}{1 / 4 u^{2} d u}$	$\tan ^{-1}(u)+c$
$\int \frac{1}{\ln x \sqrt{x^{2}-1}} d u$	$\sec ^{-1}(u)+c$
$\int \frac{1}{\sqrt{1-u^{2}}} d u$	$\sin ^{-1}(u)+c$

$$
u^{2}=x^{4}<\text { square }
$$

so let $u=x^{2}$

$$
\frac{d u}{d x}=\partial x
$$

$$
d u=2 x d x
$$

$$
\frac{1}{2 x} \cdot d u=d x
$$

Key: recognize $1+x^{\wedge}($ even \#) down below
$\xrightarrow{\text { sub }} \int \frac{x}{1+u^{2}} \frac{1}{2 x} d u=\frac{1}{2} \int \frac{1}{1+u^{2}} d u=\frac{1}{2} \tan ^{-1}(u)+c$

$$
=\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+c
$$

$$
\begin{aligned}
& \int \frac{x}{1+x^{4}} d x \\
& \text { think } \tan ^{-1}(n) \\
& \begin{array}{l}
1 x \quad+0,-7 \\
1+u^{2}
\end{array} \frac{1}{1+x^{4}} \\
& \text { Check } \\
& \left.\frac{d}{d x}\left(\left.\frac{1}{2} \tan ^{-1} \right\rvert\, x^{2}\right)+c\right)=\frac{1}{2} \cdot \frac{1}{1+\left(x^{2}\right)^{2}} \cdot 2 x=\frac{1}{1+x^{4}} \cdot x \\
& =\frac{x}{1+x^{4}}
\end{aligned}
$$

Challenge Problems
think: chart

$$
\begin{aligned}
& \int \tan x d x \\
\# & \int \frac{\sin (x)}{\cos (x)} d x \\
11 & \int \frac{1}{\cos (x)} \cdot \sin x d x
\end{aligned}
$$

Recognize derv. relationship

$$
\begin{array}{ll}
\frac{\operatorname{sub}}{d u=-\cos (x)} \\
\frac{1}{-\frac{1}{\sin x} d u}=d x
\end{array} \quad \int \frac{\sin (x)}{u}\left(\frac{1}{-\sin (x)}\right) d u=-\int \frac{1}{u} d u=-\ln (\cos (x))+c
$$

$\int=\frac{u}{n}(x)$		
$\int u^{m} d u u^{m \neq-1}$	$\frac{u^{m+1}}{m+1}+c$	kickitupby one then divide by it
$\int e^{u} d u$	$e^{u}+c$	
$\int \frac{1}{u} d u$	$\ln \|u\|+c$	
$\int \sin (u) d u$	$-\cos (u)+c$	
$\int \cos (u) d u$	$\sin (u)+c$	
$\int \sec (u) \tan (u) d u$	$\sec (u)+c$	

$$
\begin{array}{l|l}
\hline \int \frac{1}{1+u^{2}} d u & \tan ^{-1}(u)+c \\
\int \frac{1}{\operatorname{lu} \sqrt{u^{2}-1}} d u & \sec ^{-1}(u)+c \\
\int \frac{1}{\sqrt{1-u^{2}}} d u & \sin ^{-1}(u)+c
\end{array}
$$

1
challenge \# 2

$$
\int \begin{aligned}
& \frac{2 x+1}{x^{2}+1} d x \\
& \left.\begin{array}{l}
\text { deg. } 1 \text { differences: } \\
u=x^{2}+1 \\
\frac{d u}{d x}=2 x
\end{array}\right\} \quad \int \frac{2 x+1}{u} \frac{1}{\partial x} d u=\int \frac{1+\frac{1}{2 x}}{u} d u \\
& \begin{array}{c}
\text { mixed } \\
\text { variables }
\end{array} \\
& \Rightarrow \text { stuck }
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{2 x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
& l_{u=x^{2}+1} \tan ^{-1} x \\
& d u=2 x d x \\
& \int \frac{d u}{u}+\tan ^{-1} x+c=\ln \left|x^{2}+1\right|+\tan ^{-1}(x)+c
\end{aligned}
$$

