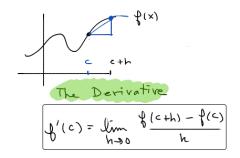
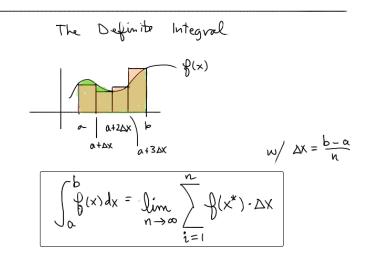
Thursday

- ▼1. Calculus I Review
 - ▼a. What is Calculus I?
 - i. Precise way of calculating change (in functions)
 - ▼ ii. Two Branches: Differential & Integral
 - 1. Both depend on the idea of an infinite limit



Link: https://www.desmos.com/calculator/t6sxoyxyty



Link: https://www.desmos.com/calculator/tgyr42ezjq

Derivatives;

Power Rule:

$$f(x) = x^{n}, \quad f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{n \to 0} \frac{(x+h)^{h} - x^{n}}{h}$$

$$= \lim_{n \to 0} \frac{\binom{n}{2} \frac{x^{n}}{x^{n}} \binom{n}{2} \frac{x^{n}}{h^{n}} + \binom{n}{2} \frac{x^{n-2}}{h^{n}} + \frac{n}{2} + \frac{n}{2}$$

$$TRIG:$$

$$f(x) = \sin(x) \qquad f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cdot \left(\frac{\cos(h) - 1}{h}\right)}{h} + \cos(x)\lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)$$

$$= \lim_{h \to 0} \frac{\sin(x) \cdot \left(\frac{\cos(h) - 1}{h}\right)}{h} + \cos(x)$$

$$= \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos(x)$$

unctions	Derivatives	Functions	Anti-Derivatives
x ⁿ	n X ⁿ⁻¹	xn	$\frac{x^{n+l}}{n+l}$
ln(X)	٧,	1/4 Vx	lnixi
sin(x)	605(X)	605(X)	sin(x)
CO 5 (X)	- sm (×)	sm (×)	- co s (x)
tan(x)	sec²(x)	5ec²(x)	tan(x)
sec(x)	se c(x)tan (x)	se c(x)tan(x)	sec(x)
LSC(X)	- csc (x) cat (x)	csc(x) cot(x)	- LSC(X)
Cot(X)	$-csc^2(x)$	csc ² (x)	-cot(x)
e [×]	ولا	e×	e×
5(1)	$\sqrt{\frac{1}{1-\chi^2}}$	$\frac{1}{\sqrt{1-\chi^2}}$	sin (x)
(05 ⁻¹ (x)	$\frac{-1}{\sqrt{1-\chi^2}}$	$\frac{1}{\sqrt{1-\chi^2}}$	- (05 ⁻¹ (X)
ton (x)	$\frac{1}{1}$	 	tan ¹ (X)
sec(x)	$\frac{1}{x\sqrt{x^2-1}}$	$\frac{1}{x\sqrt{x^2-1}}$	sec(X)
csč(X)	$\frac{-1}{\sqrt{\chi^2-1}}$	$\frac{1}{\sqrt{\sqrt{x^2-1}}}$	- csč ¹ (X)
cot (x)	$\frac{-1}{1+x^2}$	$\frac{-1}{1+\chi^2}$	cat ⁻ (x)

Why is
$$\frac{d}{dx}(\sin(x)) = \frac{1}{\sqrt{1-x^2}}$$
?
() set $y = \sin(x)$. Goal, find $y' = \frac{dy}{dx}$. (chain rule)
() so $\sin(y) = \chi$ is $\frac{d}{dx}(\sin(y)) = \frac{d}{dx}(x)$ so $\cos(y) \cdot \frac{dy}{dx} = 1$
() $\frac{dy}{dx} = \frac{1}{(\cos(y))}$ is $\sin(x) + \cos^2(y) = 1$ it follows that $\cos(y) = \sqrt{1-\sin^2(y)}$
() $\sin(y) = \chi$ from step ()
() $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

In this
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 there's nothing special about x.
(what really matters is that
it's a continuously changing
real variable)
So if $u = f(x)$ then $\frac{du}{dx} = f'(x)$ or $\frac{du}{dx} = f'(x) dx$. Meaning
 $\int (x^2 + 7)^5 (\partial x) dx$ can be solved by
 $u = x^2 + 7$, $\frac{du}{dx} = \partial x$ is $\frac{du}{dx} = \partial x dx$ so the integral is transformed
into
 $\int u^5 du = \frac{u^6}{6} + c$

Another view on

$$\int cos(x) dx = sin(x)$$

LINK: https://www.desmos.com/calculator/aszy5en1qt