Thursday 1. Calculus I Review 2. What is Calculus I? 2. Precise way of calculating change (in functions) 3. Two Branches: Differential & Integral

1. Both depend on the idea of an infinite limit

Link ! https://www.desmos.com/calculator/t6sxoyxyty

Link: https://www.desmos.com/calculator/tgyr42ezjq

Note! Differentiating is "easier" than integrating

$$\frac{d}{dx}(e^{x^2}) = e^{x^2} \cdot ax$$

$$\int e^{x^2} dx = N0$$
 elementary sol'n

unless. our function is given discrete data

Functions

Anti-Dervatives

 χ^{κ}

eX

SIM (X)

COS(X)

Sec2(X)

Sec(x) tan(x)

- csc(x) cot(x)

ln(x)

ex

— (DS(X)

sin(x)

fan(x)

sec(x)

CSC(X)

51n (X)

ton"(x)

sec (x)

Q! why is
$$\frac{d}{dx}(\sec^2x) = \frac{1}{x\sqrt{x^2-1}}$$

(1) Set
$$y = \sec^{-1}x$$
, goal $\frac{dy}{dx} = y'$.

Tiplicit
$$\frac{d}{dx}(\sec(y)) = \frac{d}{dx}(x)$$

chain:
$$\frac{d}{dx} \left(f(g(x)) \right) = f'(g(x)) \cdot g'(x)$$
 sec(y) $f(g(x)) \cdot g'(x)$

$$y' = \frac{1}{\sec(y)\tan(y)} = \frac{1}{x \cdot \tan(y)} = \frac{1}{x \sqrt{x^2-1}}$$

5 rewrite ten(y) in terms of
$$SC(y)$$
 so $ten(y) = \sqrt{x^2-1}$

$$\frac{(\cos(y), \sin(y))}{\cos^2(y)} + \frac{\cos^2(y)}{\cos^2(y)} + \frac{\sin^2(y)}{\cos^2(y)} = 1$$

IN-SWG

In this fact:
$$\int x^n dx = \frac{x^{n+1}}{x^{n+1}}$$

that x be continually varying red varidale

$$\exists x$$
. $\int (3x^2+1)^5 \cdot x dx$

Wite: there's no product ruly

into two pieces where one is Idea: Partition Integrand
(a multiple) the derivative of the other.

W=3x2+1

$$\frac{d}{dx}(n) = \frac{1}{dx}(3x^2+1)$$

 $= \int u \times \frac{1}{6x} du = \frac{1}{6} \int u^5 du$

$$\frac{du}{dx} = 6x \text{ so } du = 6x dx$$

$$\frac{d}{dx} = 6x \text{ dx}$$

$$= \frac{1}{6} \cdot \frac{1}{6} + C$$

$$= \frac{3x^2 + 1}{36} + C$$

Why is it that

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

Expand:

$$\begin{cases} (x^{n}) = x^{n} \\ (x^{n}) = x^{n} \end{cases}$$

$$\begin{cases} (x^{n}) = x^{n} \\ (x^{n}) = x^{n} \end{cases}$$

$$\begin{cases} (x^{n}) = x^{n} \\ (x^{n}) = x^{n} \end{cases}$$

$$\begin{cases} (x^{n}) = x^{n} \\ (x^{n}) = x^{n} \end{cases}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n} + (x^{n})^{n} = x^{n}}{n}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n} + (x^{n})^{n} = x^{n}}{n}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n-2} + (x^{n})^{n} = x^{n}}{n}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n-2} + (x^{n})^{n} = x^{n}}{n}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n-2} + (x^{n})^{n} = x^{n}}{n}$$

$$= \lim_{n \to \infty} \frac{(x^{n})^{n-1} + (x^{n})^{n-2} + (x^{n})^{n} + (x^{n})^{n} = x^{n}}{n}$$

Derivatives:

Power Rule:

$$f(x) = x^n$$
, $f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{n \to 0} \frac{(x+h)^h - x^n}{n}$
 $= \lim_{n \to 0} \frac{\binom{n}{0}x^h + \binom{n}{1}x^{n-1} + \binom{n}{2}x^{h^2} + \dots + \binom{n}{n}x^n}{h} = \binom{n}{1}x^{n-1} + \dots + \binom{n}{n}x^n}{h} = nx^{n-1}$

The pink terms are equal the white terms vanish as $h \rightarrow 0$.

TRIG:

$$\int_{1}^{\infty} (x) = \sin(x)$$

$$\int_{1}^{\infty} (x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cdot \left(\frac{\cos(h) - 1}{h}\right)}{h} + \cos(x)\lim_{h \to 0} \left(\frac{\sin(h)}{h}\right)$$

$$= \sin(x) \cdot 0 + \cos(x) \cdot 1 = \cos(x)$$

These ideas lead to these formulas:

Functions	Derivatives	Functions	Anti-Derivatives
xn	n× ⁿ⁻¹	-x ⁿ	<u>x^{n+l}</u>
ln(X)	1 / _×		lnixi
sin(x)	65(x)	605(X)	sin(x)
Cos(X)	- sm (x)	sm(x)	-cos(x)
tan(x)	sec²(x)	sec²(x)	tan(x)
Sec(x)	sec(x)tan(x)	sec(x)tan(x)	Sec(x)
csc(x)	- (sc(x) cot(x)	(sc(x)cot(x)	- csc(x)
Cot(X)	- csc ² (x)	csc ² (x)	- cot(x)
e^{x}	ex	e ^x	e×
55n-(X)	1 1 ×2	1 1 - x2	5\n^(x)
(x)	$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{-1}{\sqrt{1-x^2}} $	1 - x ² 1 - x ²	- cos ⁻¹ (x)
tan'(x)	1 +×2-	1 + x2-	ton (x)
SeČ(X)	$\times\sqrt{\frac{1}{x^2-1}}$	x \(\sqrt{x^2 - (} \)	sec(X)
cscim	$\frac{-1}{\sqrt{\chi^2-1}}$ $\frac{-1}{1+\chi^2}$	<u> </u>	- csc (x)
cotilx)	-(-(1+x2	cotilx)

Why is
$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$
?

(2) so
$$sim(y) = \chi$$
 $\frac{d}{dx}(sim(y)) = \frac{d}{dx}(x)$ so $cos(y) \cdot \frac{dy}{dx} = 1$

(3)
$$dy = \frac{1}{\cos(y)}$$
 is since $\sin^2(y) + \cos^2(y) = 1$ it follows that $\cos(y) = \sqrt{1 - \sin^2(y)}$ which $\sin(y) = \chi$ from step (2)

$$(9) \quad y' = \frac{1}{\sqrt{1-x^2}}$$

In this $\int x^n dx = \frac{x^{n+1}}{n+1} + c$

there's nothing special about x. (what really matters is that it's a continuously changing red variable)

So if u = f(x) then $\frac{du}{dx} = f'(x)$ or du = f'(x) dx. Meaning

((x2+7)5.(2x)dx can be solved by

 $u=x^2+7$, $\frac{du}{dx}=2x$ or $\frac{du}{dx}=2x dx$ so the integral is transformed

 $\int n^5 dn = \frac{n^6 + c}{c}$

LINK: https://www.desmos.com/calculator/aszy5en1qt