you need to be able to finish these in less than a minute
1.

$$
\int x d x=\frac{x^{2}}{2}+C
$$

$$
\int \sqrt[3]{x} d x=\int x^{1 / 3} d x
$$

3.

$$
\frac{3}{4} x^{\frac{4}{3}}+c
$$

4.

$$
\int \frac{1}{x} d x=\ln |x|+c
$$

$$
\int \frac{1}{\sqrt{x}} d x=\int x^{-1 / 2} d x \quad 2 x^{1 / 2}+c
$$

$$
\begin{equation*}
\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c \tag{6.}\\
& \int \frac{1}{x \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c
\end{align*}
$$

8.

$$
\int e^{x} d x=e^{x}+c
$$

9.

$$
\int \sin x d x=-\cos x+C
$$

10.

$$
\int \cos x d x=\sin x+c
$$

11.

$$
\int \sec ^{2} x d x=\tan x+c
$$

12.

$$
\int \sec x \tan x d x=\sec x+c
$$

Why does integration seem harder than differentiation?

- Integration is a "global" problem.

- Differenticter is a "local" problem

Note: If your function is given by discrete data - the opposite occurs.

