Thursdang-Weak 9
u-substition $(u=f(x))$

$$
\int u^{n} d u=\frac{u^{n+1}}{n+1}
$$

Ex: $\int(3 x+1)^{5} d x=\int(u)^{5} \frac{1}{3} d u=\frac{1}{3} \int u^{5} d u=\frac{1}{6} \cdot \frac{1}{3} u^{\text {integrate }}+c=\frac{1}{18}(3 x+1)^{6}+C$

$$
\begin{array}{l|l}
u=3 x+1, n=5 \\
\frac{d u}{d x}=3 \text { so } d u=3 d x & \text { check } \\
\frac{1}{3} d u=d x
\end{array} \quad \frac{d}{d x}(\text { ans })=\frac{6}{18}(3 x+1)^{5} \cdot 3=(3 x+1)^{5}
$$

Ex: $\int \sqrt{5 x+1} d x=\int(u)^{\frac{1}{2}} \cdot \frac{1}{5} d u=\frac{1}{5} \int u^{\frac{1}{2}} d u=\frac{1}{5} \cdot \frac{2}{3} u^{\frac{3}{2}}+c=\frac{2}{15}(5 x+1)^{\frac{3}{2}}+c$

$$
\begin{aligned}
& x=1 / 2 \\
& u=5 x+1 \\
& \frac{d u}{d x}=5, d u=5 d x=\frac{1}{5} d u=d x \quad \begin{array}{l}
\text { check } \\
\frac{d}{d x}(\text { ans })=\frac{3}{2} \cdot \frac{2}{15}(5 x+1)^{\frac{1}{2}} \cdot 5
\end{array}=(5 x+1)^{1 / 2}
\end{aligned} \quad \int \frac{1}{x} d x=
$$

EX,

$$
\begin{aligned}
& \int \frac{1}{(4 x+1)} d x=\int(4 x+1)^{-1} d x=\frac{1}{4} \\
& \begin{array}{l}
u=4 x+1 \\
d u=4 d x
\end{array} \\
& \text { eels } \\
& \frac{d}{d x}(\text { ans })=\frac{1}{4} \cdot \frac{4}{4 x+1}=\frac{1}{4 x+1}
\end{aligned}
$$

Ex. $\int x^{99} \cdot\left(x^{100}+3\right)^{2} d x=\int u^{2} d u$
Look for "derivative relationships" "degree 1 differences"
indicates
$u=($ larger dequeue terms $)=x^{100}+3=u$

$$
x=\text { ravish }
$$

$$
\begin{aligned}
\frac{d u}{d x}=100 x^{99}, d u & =100 x^{99} d x \\
\frac{1}{100 x^{99}} d u & =d x
\end{aligned}
$$

sub.
$\frac{\text { check: }}{\frac{d}{d x}(a n s)}=\frac{3\left(x^{100}+3\right)^{2}}{300} \cdot 100 x^{99}=x^{99}\left(x^{100}+3\right)^{2} r=\frac{\left(x^{100}+3\right)^{3}}{300}+c$

Thursday - Week 9
Ex: $\int(3 x+5)^{4} d x=\int(u)^{4} \cdot \frac{1}{3} d u=\frac{1}{3} \int u^{4} d u=\frac{1}{5} \cdot \frac{1}{3} u^{5}=\frac{(3 x+5)^{5}}{15}+c$
Think: $\int u^{4} d u$, (1) $u=3 x+5$ ($u=$ inside parenthesis)
(2) $\frac{d u}{d x}=3, \quad d u=3 d x \quad \sim \quad \frac{1}{3} d u=d x$

$$
\begin{aligned}
\begin{aligned}
& \text { check) } \\
& \frac{d}{d x}(\text { ans })=\frac{5}{15}(3 x+5)^{4} \cdot 3 \\
&=(3 x+5)^{4} \mathrm{~V}
\end{aligned}
\end{aligned}
$$

Ex. $\int \sqrt{5 x+7} d x=\int u^{\frac{1}{2}} d u$
we integrate

$$
\begin{aligned}
& \text { Ex } \int \sqrt{5 x+7} d x=\int u^{\frac{1}{2}} d u \\
& \begin{array}{l}
\frac{d u}{d x}=5, \sqrt{5} d u=d x \\
\frac{1}{d x}(\text { aus })=\frac{1}{2} \frac{1}{15}(5 x+7)^{1 / 2} \cdot 5=(5 x+7)^{1 / 2} \\
\left.\begin{array}{l}
\frac{1}{2} \\
\frac{1}{5} d u=\frac{1}{5} \int u^{\frac{1}{2}} d u
\end{array}\right)=\frac{2}{3} \frac{1}{5} u^{\frac{3}{2}}+c=\frac{2}{15}(5 x+7)^{3 / 2}+c
\end{array} \\
& \text { Ex } \int \frac{1}{(5 x+6)} d x=\int \frac{1}{u} \cdot \frac{1}{5} d u=\frac{1}{5} \int \frac{1}{u} d u=\frac{1}{5} \int \frac{d u}{u}=\frac{1}{5} \ln |u|+c=\frac{1}{5} \ln |5 x+6|+C
\end{aligned}
$$

$$
\begin{aligned}
& u=5 x+6 \\
& d u=5 d x \\
& \frac{1}{5} d u=d x
\end{aligned}
$$

check

$$
\frac{1}{d x}(\text { ans })=\frac{1}{5} \cdot \frac{5}{5 x+6}=\frac{1}{5 x+6}
$$

Ex. $\int x^{99}\left(x^{100}+17\right)^{3} d x$
key: recognize derivative relationships ... degree one differences
set $u=$ nigher degree term

$$
\left(\begin{array}{ll}
\text { key: recognize derivative relationships ... degree one differences } & \begin{array}{l}
\frac{1}{d u}=x^{100}+17 \\
=\int x^{99}(u)^{3} \cdot \frac{1}{100 x^{99}} d u=\frac{1}{100} \int u^{3} d u
\end{array} \begin{array}{l}
\frac{d u}{d x}=100 x^{99} d x \\
\frac{1}{100 x^{99}} d u=d x
\end{array}
\end{array}\right.
$$

$$
=\frac{1}{400} u^{4}+c=\frac{1}{400}\left(x^{100}+17\right)^{4}+c
$$

$$
\frac{d}{d x}(\text { ans })=\frac{4}{400}\left(x^{100}+17\right)^{3} \cdot 100 x^{99}=x^{99}\left(x^{100}+17\right)^{3}
$$

