Taylor Remainders

1. Use the Maclaurin series for e^{x} and the Taylor Remainder Theorem to estimate $e^{0.1}$ to within .0001 of the acutal value.

Taylor's Inequality:
If $\left|f^{(n+1)}(x)\right| \leq M$ for all x such that $|x-a|<d$, then $\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$ for $|x-a|<d$.
First consider the function $f(x)=e^{x}$. We'll use the Maclaurin series for e^{x}, so $a=0$. (The Maclaurin series is easy to produce, and 0.1 is close to 0 - these are both reasons to use the Maclaurin series for e^{x}.)

Now think about all of the derivatives of $f(x)=e^{x}$. This is a special case - all of the derivativss are e^{x}. This makes e^{x} a bit easier to work with than other functions. One less out of all of the "moving targets" when trying to figure out how long a polynomial we need to get an estimate within a given error bound.

Since we cannot establish an upper bound for $\left|f^{(n)}(x)\right|$ for all reals, we need to restrict our "window." That is, we need to select d and an associated M so that for any x such that $|x| \leq d$, then $\left|f^{(n)}(x)\right| \leq M$. Since we are interested in estimating $e^{0.1}$, we also need $|0.1| \leq d$.

If we let $d=1$, then an upper bound for $\left|e^{x}\right|$ on $[-1,1]$ is e, which is less than 3 . Note that we could let $d=0.1$, but then the upper bound on $\left|e^{x}\right|$ on $[-0.1,0.1]$ is $e^{0.1}$, and this is what we are trying to estimate. You need to act as if the function e^{x} has been removed from your calculator - we are building it from scratch. We'll assume that e is less than 3 .

From the inequality above, we know

$$
\left|R_{n}(0.1)\right| \leq \frac{3}{(n+1)!}|0.1|^{n+1}
$$

If we set

$$
\frac{3}{(n+1)!}|0.1|^{n+1} \leq 0.0001
$$

and solve for n, this will tell us what degree polynomial we need (or simply where we can stop in the series).

The smallest positive integer n that satisfies the inequality above is $n=3$.

The Maclaurin series for e^{x} is

$$
1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots=\sum_{n=0}^{+\infty} \frac{1}{n!} x^{n}
$$

So

$$
e^{0.1} \simeq 1+0.1+\frac{1}{2}(0.1)^{2}+\frac{1}{6}(0.1)^{3}=\frac{6631}{6000} \simeq 1.10517
$$

2. Use the Maclaurin series for e^{x} and the Taylor Remainder Theorem to estimate e^{2} to within .0001 of the acutal value.

Same issues as before, but now when we select d it must be at least as big as 2. If $d=2$, then the upper bound of e^{x} (and all of its derivatives) on $[-2,2]$ is e^{2}. We are allowed to use $e<3$, so we can let $M=9$.

From the inequality above, we know

$$
\left|R_{n}(2)\right| \leq \frac{9}{(n+1)!}|2|^{n+1}
$$

If we set

$$
\frac{9}{(n+1)!}|2|^{n+1} \leq 0.0001
$$

and solve for n, this will tell us what degree polynomial we need (or simply where we can stop in the series).

The smallest positive integer n that satisfies the inequality above is $n=11$.

$$
e^{2} \simeq 1+2+\frac{1}{2!} 2^{2}+\frac{1}{3!} 2^{3}+\cdots+\frac{1}{11!} 2^{11} \simeq 7.38905
$$

