
Taylor & Maclaurin Review

1. More Taylor & Maclaurin stuff . . . .
(a) Find the interval of convergece for the power series

below:
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By the Ratio Test, this series converges for all values
of x.

(b) Find the limit:
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(c) Use a fifth degree polynomial to estimate∫ 1
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2. Find the interval of convergence for the power series
below:
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From the Ratio Test, we know that the series converges
for valees of x such that |x| < 1, or −1 < x < 1 and di-
verges for |x| > 1, or (−∞,−1) ∪ (1,+∞). We have to
check whether or not the series converges for x = 1 and
x = −1.

When x = 1, the power series is equal to
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which converges by the Alternating Series Test.

When x = −1, the power series is equal to
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which diverges by p-series test.



Therefore, the interval of convergence for the Maclau-
rin Series for ln(x+ 1 is [−1, 1].


