MA 163 Exam 3

1. Find the third degree Taylor polynomial for 23/2 about = = 1.
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Using the above calculations (and don’t forget the factorials) . . . .
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2. Find the arc length of the curve

2
Y= gm% from 0 to 3

Since the derivative is just /z
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3. Evaluate the integral:

too g b1 1
/ — dr = lim Z3de = lim |—=z7?
7 4o b—+oo Jr 4 b—+oo | 8

. 1 1 1
= lim |[-——-|——=— || ==—
bﬁm{ 802 ( 392)] 392

11113’5’111111

105 1059 T at6%) 302 = 22 13 = 4@ Tae T aed) T a) 302

2

3/2 3/2\ _ —
(4% —1/)_38—1)_%

b

7

So. ..

n=4

“+o0o
1
. 1< — < 0.01
0.0096 _;%3_00 03



4. The Maclaurin series for cos z is below.
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Find the interval of convergence.
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By the Ratio Test, this series converges for all values of x.

5. Use the series above to obtain an estimate for cos (3) to within 0.01 of
the actual vallue.

1 =1 L 12—1-1 AN 0.8776
“\2)7 T2\2) Tal\z) T
(Alternating series, and the last fraction is less than 0.01, so we can “stop”
here.)

6. Use an eighth degree Taylor polynomial to estimate
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7. The Maclaruin series for the funciton In(z + 1) is below. Find the interval
of convergence.
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From the Ratio Test, we know that the series converges for —1 < = < 1
and diverges for (—oo,—1) U (1,+00). We have to check whether or not
the series converges for x =1 and x = —1.

When x = 1, the power series is equal to
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When z = —1, the power series is equal to
1 1 1
-1- 373 1" which diverges

Therefore, the interval of convergence for the Maclaurin Series for In(z+1)
is (—1,1].

8. Use # 8 to find a series that converges to In 2.
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9. Prove ¢'™ +1 = 0 We know

B im)" ir  (im)?  (im)®  (im)*  (im)®  (im)©
e T T R TR

+ ...

since the series converges we can rearrange the order of the terms, keeping
the even powers separate from the odd
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reconizing the odd powers are Maclaurin series for cosine evaluated at
x = im and likewise for the odds and sine.
T

e = cos(m) +isin(m) = —-1+0=—1

thus ‘
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