
MA 163 Exam 3

1. Find the third degree Taylor polynomial for x3/2 about x = 1.

f(x) = x3/2 f(1) = 1

f ′(x) = 3
2x

1/2 f ′(1) = 3
2

f ′′(x) = 3
4x
−1/2 f ′′(1) = 3

4

f (3)(x) = − 3
8x
−3/2 f (3)(1) = − 3

8

Using the above calculations (and don’t forget the factorials) . . . .

x3/2 ≈ 1 +
3

2
(x− 1) +

3

8
(x− 1)2 − 1

16
(x− 1)3

2. Find the arc length of the curve

y =
2

3
x

3
2 from 0 to 3

Since the derivative is just
√
x

l =

∫ 3

0

√
1 + (f ′(x))2 dx =

∫ 3

0

√
(1 + x) dx =

∫ 4

1

√
(u) dx

=
2u3/2

3

∣∣∣4
1

=
2

3
(43/2 − 13/2) =

2

3
(8− 1) = 14

3

3. Evaluate the integral:∫ +∞

7

1

4x3
dx = lim

b→+∞

∫ b

7

1

4
x−3 dx = lim

b→+∞

[
−1

8
x−2

]b
7

= lim
b→+∞

[
− 1

8b2
−
(
− 1

392

)]
=

1

392

So . . .

1

4(43)
+

1

4(53)
+

1

4(63)
+

1

392
≤

+∞∑
n=4

1

4n3
≤ 1

4(43)
+

1

4(53)
+

1

4(63)
+

1

4(73)
+

1

392

0.00961 ≤
+∞∑
n=4

1

4n3
≤ 0.0103



4. The Maclaurin series for cosx is below.

1− x2

2!
+
x4

4!
− x6

6!
+ · · · =

+∞∑
n=0

(−1)n

(2n)!
x2n

Find the interval of convergence.∣∣an+1

∣∣∣∣an∣∣ =

|x|2(n+1)

(2(n+1))!

|x|2n
(2n)!

=
(2n)!

(2n+ 2)!
· |x|

2n+2

|x|2n

=
(2n)!

(2n+ 2)(2n+ 1)(2n)!
|x|2 =

1

(2n+ 2)(2n+ 1)
|x|2

lim
n→+∞

∣∣an+1

∣∣∣∣an∣∣ = lim
n→+∞

1

(2n+ 2)(2n+ 1)
|x|2

= |x|2 lim
n→+∞

1

(2n+ 2)(2n+ 1)
= |x|2 · 0 = 0 < 1

By the Ratio Test, this series converges for all values of x.

5. Use the series above to obtain an estimate for cos
(
1
2

)
to within 0.01 of

the actual vallue.

cos

(
1

2

)
= 1− 1

2

(
1

2

)2

+
1

24

(
1

2

)4

' 0.8776

(Alternating series, and the last fraction is less than 0.01, so we can “stop”
here.)

6. Use an eighth degree Taylor polynomial to estimate∫ 1

0

cos(x2)− 1

x
dx '

∫ 1

0

−1

2
x3+

1

24
x7 dx =

[
−1

8
x4 +

1

192
x8
]1
0

= −1

8
+

1

192
= − 23

192(
cos(x2) ' 1− 1

2

(
x2
)2

+
1

24
(x2)4 = 1− 1

2
x4 +

1

24
x8 =⇒ cos(x2)− 1

x
' −1

2
x3 +

1

24
x7
)



7. The Maclaruin series for the funciton ln(x+ 1) is below. Find the interval
of convergence.

x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · · =

+∞∑
n=1

(−1)n+1

n
xn

∣∣an+1

∣∣∣∣an∣∣ =

∣∣∣ (−1)n+1+1

n+1 xn+1
∣∣∣∣∣∣ (−1)nn+1 x

n
∣∣∣ =

n

n+ 1
· |x|

n+1

|x|n
=

n

n+ 1
|x|

lim
n→+∞

∣∣an+1

∣∣∣∣an∣∣ = lim
n→+∞

n

n+ 1
|x| = |x| lim

n→+∞

n

n+ 1
= |x| · 1 = |x|

From the Ratio Test, we know that the series converges for −1 < x < 1
and diverges for (−∞,−1) ∪ (1,+∞). We have to check whether or not
the series converges for x = 1 and x = −1.
When x = 1, the power series is equal to

1− 1

2
+

1

3
− 1

4
+ · · · which converges

When x = −1, the power series is equal to

−1− 1

2
− 1

3
− 1

4
− · · · which diverges

Therefore, the interval of convergence for the Maclaurin Series for ln(x+1)
is (−1, 1].

8. Use # 8 to find a series that converges to ln 2.

Plug x = 1 into the series in #8: ln 2 = 1− 1

2
+

1

3
− 1

4
+ · · ·



9. Prove eiπ + 1 = 0 We know

ex =

+∞∑
n=0

xn

n!

sin(x) =

+∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cos(x) =

+∞∑
n=0

(−1)n
x2n

(2n)!

so

eiπ =

+∞∑
n=0

(iπ)n

n!
= 1 +

iπ

1
+

(iπ)2

2!
+

(iπ)3

3!
+

(iπ)4

4!
+

(iπ)5

5!
+

(iπ)6

6!
+ . . .

since the series converges we can rearrange the order of the terms, keeping
the even powers separate from the odd

eiπ =

+∞∑
n=0

(iπ)n

n!
= 1+

(iπ)2

2!
+

(iπ)4

4!
+

(iπ)6

6!
+ · · ·+ iπ

1
+

(iπ)3

3!
+

(iπ)5

5!
+ . . .

using the fact that i2 = −1 and i4 = 1 we get

eiπ =

+∞∑
n=0

(iπ)n

n!
= 1− π2

2!
+
π4

4!
− π6

6!
+ · · ·+ iπ

1
− i(π)3

3!
+
i(π)5

5!
+ . . .

factoring out i in the second half

eiπ =

+∞∑
n=0

(iπ)n

n!
= 1− π2

2!
+
π4

4!
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6!
+ · · ·+ i

(
π

1
− π3

3!
+
π5

5!
+ . . .

)
reconizing the odd powers are Maclaurin series for cosine evaluated at
x = iπ and likewise for the odds and sine.

eiπ = cos(π) + i sin(π) = −1 + 0 = −1

thus
eiπ + 1 = 0


