MA 163 Exam 3

1. Find the third degree Taylor polynomial for $x^{3 / 2}$ about $x=1$.

$$
\begin{array}{ll}
f(x)=x^{3 / 2} & f(1)=1 \\
f^{\prime}(x)=\frac{3}{2} x^{1 / 2} & f^{\prime}(1)=\frac{3}{2} \\
f^{\prime \prime}(x)=\frac{3}{4} x^{-1 / 2} & f^{\prime \prime}(1)=\frac{3}{4} \\
f^{(3)}(x)=-\frac{3}{8} x^{-3 / 2} & f^{(3)}(1)=-\frac{3}{8}
\end{array}
$$

Using the above calculations (and don't forget the factorials)

$$
x^{3 / 2} \approx 1+\frac{3}{2}(x-1)+\frac{3}{8}(x-1)^{2}-\frac{1}{16}(x-1)^{3}
$$

2. Use integrals to estimate the series below to within 0.001 of the actual value.

$$
\sum_{n=4}^{+\infty} \frac{1}{4 n^{3}}
$$

Since $1 / 4\left(7^{3}\right)<0.001$, we can use 7 as the point at which to apply the integral to estimate the tail of the series.

$$
\frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(6^{3}\right)}+\int_{7}^{+\infty} \frac{1}{4 x^{3}} d x \leq \sum_{n=4}^{+\infty} \frac{1}{4 n^{3}} \leq \frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(6^{3}\right)}+\frac{1}{4\left(7^{3}\right)}+\int_{7}^{+\infty} \frac{1}{4 x^{3}} d x
$$

3. Evaluate the integral:

$$
\begin{gathered}
\int_{7}^{+\infty} \frac{1}{4 x^{3}} d x=\lim _{b \rightarrow+\infty} \int_{7}^{b} \frac{1}{4} x^{-3} d x=\lim _{b \rightarrow+\infty}\left[-\frac{1}{8} x^{-2}\right]_{7}^{b} \\
=\lim _{b \rightarrow+\infty}\left[-\frac{1}{8 b^{2}}-\left(-\frac{1}{392}\right)\right]=\frac{1}{392}
\end{gathered}
$$

So . . .

$$
\begin{gathered}
\frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(5^{3}\right)}+\frac{1}{4\left(6^{3}\right)}+\frac{1}{392} \leq \sum_{n=4}^{+\infty} \frac{1}{4 n^{3}} \leq \frac{1}{4\left(4^{3}\right)}+\frac{1}{4\left(5^{3}\right)}+\frac{1}{4\left(6^{3}\right)}+\frac{1}{4\left(7^{3}\right)}+\frac{1}{392} \\
0.00961 \leq \sum_{n=4}^{+\infty} \frac{1}{4 n^{3}} \leq 0.0103
\end{gathered}
$$

4. The Maclaurin series for $\cos x$ is below.

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Find the interval of convergence.

$$
\begin{aligned}
& \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\frac{|x|^{2(n+1)}}{(2(n+1))!}}{\frac{|x|^{2 n}}{(2 n)!}}=\frac{(2 n)!}{(2 n+2)!} \cdot \frac{|x|^{2 n+2}}{|x|^{2 n}} \\
= & \frac{(2 n)!}{(2 n+2)(2 n+1)(2 n)!}|x|^{2}=\frac{1}{(2 n+2)(2 n+1)}|x|^{2} \\
& \lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow+\infty} \frac{1}{(2 n+2)(2 n+1)}|x|^{2} \\
= & |x|^{2} \lim _{n \rightarrow+\infty} \frac{1}{(2 n+2)(2 n+1)}=|x|^{2} \cdot 0=0<1
\end{aligned}
$$

By the Ratio Test, this series converges for all values of x.
5. Use the series above to obtain an estimate for $\cos \left(\frac{1}{2}\right)$ to within 0.01 of the actual vallue.

$$
\cos \left(\frac{1}{2}\right)=1-\frac{1}{2}\left(\frac{1}{2}\right)^{2}+\frac{1}{24}\left(\frac{1}{2}\right)^{4} \simeq 0.8776
$$

(Alternating series, and the last fraction is less than 0.01 , so we can "stop" here.)
6. Use an eighth degree Taylor polynomial to estimate

$$
\begin{aligned}
& \int_{0}^{1} \frac{\cos \left(x^{2}\right)-1}{x} d x \simeq \int_{0}^{1}-\frac{1}{2} x^{3}+\frac{1}{24} x^{7} d x=\left[-\frac{1}{8} x^{4}+\frac{1}{192} x^{8}\right]_{0}^{1}=-\frac{1}{8}+\frac{1}{192}=-\frac{23}{192} \\
& \left(\cos \left(x^{2}\right) \simeq 1-\frac{1}{2}\left(x^{2}\right)^{2}+\frac{1}{24}\left(x^{2}\right)^{4}=1-\frac{1}{2} x^{4}+\frac{1}{24} x^{8} \Longrightarrow \frac{\cos \left(x^{2}\right)-1}{x} \simeq-\frac{1}{2} x^{3}+\frac{1}{24} x^{7}\right)
\end{aligned}
$$

7. The Maclaruin series for the funciton $\ln (x+1)$ is below. Find the interval of convergence.

$$
\begin{gathered}
x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots=\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^{n} \\
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\left|\frac{(-1)^{n+1+1}}{n+1} x^{n+1}\right|}{\left|\frac{(-1)^{n}}{n+1} x^{n}\right|}=\frac{n}{n+1} \cdot \frac{|x|^{n+1}}{|x|^{n}}=\frac{n}{n+1}|x| \\
\lim _{n \rightarrow+\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow+\infty} \frac{n}{n+1}|x|=|x| \lim _{n \rightarrow+\infty} \frac{n}{n+1}=|x| \cdot 1=|x|
\end{gathered}
$$

From the Ratio Test, we know that the series converges for $-1<x<1$ and diverges for $(-\infty,-1) \cup(1,+\infty)$. We have to check whether or not the series converges for $x=1$ and $x=-1$.
When $x=1$, the power series is equal to

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \text { which converges }
$$

When $x=-1$, the power series is equal to

$$
-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\cdots \text { which diverges }
$$

Therefore, the interval of convergence for the Maclaurin Series for $\ln (x+1)$ is $(-1,1]$.
8. Use $\# 8$ to find a series that converges to $\ln 2$.

Plug $x=1$ into the series in $\# 8: \ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
9. Prove $e^{i \pi}+1=0$ We know

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{+\infty} \frac{x^{n}}{n!} \\
\sin (x)=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\cos (x)=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{gathered}
$$

SO
$e^{i \pi}=\sum_{n=0}^{+\infty} \frac{(i \pi)^{n}}{n!}=1+\frac{i \pi}{1}+\frac{(i \pi)^{2}}{2!}+\frac{(i \pi)^{3}}{3!}+\frac{(i \pi)^{4}}{4!}+\frac{(i \pi)^{5}}{5!}+\frac{(i \pi)^{6}}{6!}+\ldots$
since the series converges we can rearrange the order of the terms, keeping the even powers separate from the odd

$$
e^{i \pi}=\sum_{n=0}^{+\infty} \frac{(i \pi)^{n}}{n!}=1+\frac{(i \pi)^{2}}{2!}+\frac{(i \pi)^{4}}{4!}+\frac{(i \pi)^{6}}{6!}+\cdots+\frac{i \pi}{1}+\frac{(i \pi)^{3}}{3!}+\frac{(i \pi)^{5}}{5!}+\ldots
$$

using the fact that $i^{2}=-1$ and $i^{4}=1$ we get

$$
e^{i \pi}=\sum_{n=0}^{+\infty} \frac{(i \pi)^{n}}{n!}=1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+\cdots+\frac{i \pi}{1}-\frac{i(\pi)^{3}}{3!}+\frac{i(\pi)^{5}}{5!}+\ldots
$$

factoring out i in the second half

$$
e^{i \pi}=\sum_{n=0}^{+\infty} \frac{(i \pi)^{n}}{n!}=1-\frac{\pi^{2}}{2!}+\frac{\pi^{4}}{4!}-\frac{\pi^{6}}{6!}+\cdots+i\left(\frac{\pi}{1}-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}+\ldots\right)
$$

reconizing the odd powers are Maclaurin series for cosine evaluated at $x=i \pi$ and likewise for the odds and sine.

$$
e^{i \pi}=\cos (\pi)+i \sin (\pi)=-1+0=-1
$$

thus

$$
e^{i \pi}+1=0
$$

