MA 163 Exam 3 Guide

1. Find the third degree Taylor polynomial for $x^{3 / 2}$ about $x=1$.
2. Use integrals to estimate the series below to within 0.001 of the actual value.

$$
\sum_{n=4}^{+\infty} \frac{1}{4 n^{3}}
$$

3. The Maclaurin series for $\cos x$ is below.

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Find the interval of convergence.
4. Use the series above to obtain an estimate for $\cos \left(\frac{1}{2}\right)$ to within 0.01 of the actual vallue.
5. Use an eighth degree Taylor polynomial to estimate

$$
\int_{0}^{1} \frac{\cos \left(x^{2}\right)-1}{x} d x=
$$

6. The Maclaruin series for the funciton $\ln (x+1)$ is below. Find the interval of convergence.

$$
x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots=\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

7. Use the expansion above to find a series that converges to $\ln 2$.
8. Prove the following (most beautiful) equation is true:

$$
e^{i \pi}+1=0
$$

Hint: Find Maclaurin series for $e^{x}, \cos (x)$ and $\sin (x)$. Then evaluate the series for e^{x} at $x=i \theta$. Finally, evaluate this series at $\theta=\pi$.

