MA 163 Exam 3

1. Use integrals to estimate the series below to within 0.005 of the actual value.

$$
\sum_{n=4}^{+\infty} \frac{1}{n^{3}}
$$

2. Find the third degree Taylor polynomial for $x^{4 / 3}$ about $x=1$.
3. The Maclaurin series for $\sin x$ is below.

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

Find the interval of convergence.
4. Estimate to within 0.01 of the actual value..

$$
\sin \left(\frac{1}{2}\right)=
$$

5. Use a sixth degree Taylor polynomial to estimate

$$
\int_{0}^{1} \frac{\sin \left(x^{2}\right)}{x} d x=
$$

6. Find the interval of convergence of

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n 2^{n}}(x-5)^{n}
$$

7. Find the Maclaurin series for the function below and use it to give a series that converges to 2 .

$$
f(x)=\frac{1}{1-x}
$$

8. Prove that $e^{i \pi}=1$
