Monday - Week 11
Plan this week
M. Study Gride
T, Office Hours: 10 am
w: (Office Hours: 8:30-9:30 pm)
Th: Exam 3
F: Exam 3

MA 163 Exam 3 Guide

1. Find the third degree Taylor polynomial for $x^{3 / 2}$ about $x=\underline{\underline{1}}$
what? $\sum_{n=0}^{3} \frac{f^{(n)}(1)(x-1)^{n}}{n!} \overbrace{\text { where }}$

$$
\begin{array}{l|l}
f(x)=x^{3 / 2} & f^{\prime}(1)=1 \\
f^{\prime}(x)=\frac{3}{2} x & f^{\prime / 2} \\
f^{\prime \prime}(1)=\frac{3}{2} & =1+\frac{3}{2}(x-1)+\frac{3}{2 \cdot 4}(x-1)^{2}-\frac{3}{31 \cdot 8}(x-1)^{3} \\
f^{-1 / 2} & f^{\prime \prime}(1)=\frac{3}{4}
\end{array}
$$

2. Use integrals to estimate the series below to within 0.001 of the actual value.

Idea: By hand find n sit. $\frac{1}{4 n^{3}}<0.001$ (1) $n=6$ works: $\frac{1}{4.6^{3}}<0.001$
(2) After $n=6$ estimate the tall of the series with an

$$
\begin{aligned}
& \text { (2) After } n=6 \text { estimate the tall of the series } \\
& \text { the servo }=\text { Area of Rectangles inter } \\
& 4,4^{3}+\frac{1}{4,5^{3}}+\int_{6}^{4 x^{3}} \frac{1}{4 x^{3}} d x \leq \sum_{n=4}^{+\infty} \frac{1}{4 n^{3}}
\end{aligned}
$$

$$
\frac{1}{4 \cdot 4^{3}}+\frac{1}{4 \cdot 5^{3}}+\int_{6}^{\infty} \frac{1}{4 x^{3}} \leq \frac{1}{4 n^{3}} \leq \frac{1}{4 \cdot 5^{3}}+\frac{1}{4 \cdot 5^{2}}+\frac{1}{46^{7}}+\int_{1}^{\infty} \frac{1}{4 x^{3}}
$$

$$
\frac{1}{8}
$$

$$
\frac{1}{4.64}+\frac{1}{4.125}+\frac{1}{8.48} \leq \sum \frac{1}{44} \leq \frac{1}{4.64}+\frac{1}{4.125}+\frac{1}{4.6^{3}}+\frac{1}{8.45}
$$

Sens
(3) $\sum_{n=4}^{+\infty}$

$$
\leq \frac{1}{4 \cdot y^{3}}+\frac{1}{4 \cdot 5^{3}}+\frac{1}{4 \cdot 6^{3}}+\int_{6}^{+\infty} \frac{1}{4 x^{3}} d x
$$

\Rightarrow Between

$$
(.0085, .0096)
$$

accurate, us to. .001
3. The Maclaurin series for $\cos x$ is below.

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Find the interval of convergence.

$$
\underset{\text { Rest }}{\operatorname{Rati}}=\left|\frac{a_{n+1}}{a_{n}}\right| \xrightarrow[n \rightarrow \infty]{\longrightarrow}
$$

$$
\begin{aligned}
& \text { bye abs value ignore }(-1)^{n} \\
& \begin{array}{l}
\text { abs value ignore }(-1)^{n} \\
\left|\begin{array}{l}
\frac{x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(\partial n)!}{x^{2 n}}|=| \frac{x^{2 n} \cdot x^{2} \cdot(\partial n)!}{(\partial n+2)(\partial n+1)(\partial n)!} x^{2 n+2)!}
\end{array}\right|=\left|\frac{x^{2}}{(\partial n+\partial)(\partial n+1)}\right|
\end{array} \\
& \text { as } n \longrightarrow \infty \text { this goes to } \\
& \text { is less than } 1 \\
& \Rightarrow \text { Int. } \rightarrow \text { Gov. }=(-\infty, \infty)
\end{aligned}
$$

4. Use the series above to obtain an estimate for $\cos \left(\frac{1}{2}\right)$ to within 0.01 of the actual value.

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!} \\
& \cos \left(\frac{1}{2}\right)=1-\frac{\left(\frac{1}{2}\right)^{2}}{2!}+\frac{\left(\frac{1}{2}\right)^{4}}{4!}-\frac{\left(\frac{1}{2}\right)^{6}}{6!}+\frac{\left(\frac{1}{2}\right)^{8}}{8!}
\end{aligned}
$$

$$
\text { So: } 1-\frac{\left(\frac{1}{2}\right)^{2}}{2!}=1-\frac{1}{4}\left(\frac{1}{2!}\right)=1-\frac{1}{8}=\frac{7}{8}
$$

is within (the next vdu $\left.\frac{\left(\frac{1}{2}\right)^{4}}{41}=\frac{1}{16} \cdot \frac{1}{24}\right)$
4 the actual value less than .01,

Alternating
series
Test ;

An alt, senses approximation (truncation) will be accurate up to the absolute value of the next term.
$\sin 4$

$$
\cos (1 / 2) \approx \frac{7}{8} \text { withe . il accuser) }
$$

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}
$$

$$
\begin{aligned}
& \text { 5. Use an eighth degree Taylor polynomial to estimate } \\
& \int_{0}^{1} \frac{\cos \left(x^{2}\right)-1}{x} d x= \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}- \\
& \cos \left(x^{2}\right)=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!} \longleftarrow \\
& =\int_{0}^{1} \frac{1-\frac{x^{4}}{2}+\frac{x^{8}}{4!}-1}{x} d x=\int_{0}^{1} \frac{x^{3}}{2}-\frac{x^{7}}{24} d x \\
& =\frac{x^{4}}{8}-\left.\frac{x^{8}}{8.24}\right|_{0} ^{1} \\
& =\frac{1}{8}-\frac{1}{8.24}=\frac{1}{8}(1-1 / 24) \\
& =\frac{1}{8}\left(\frac{23}{24}\right)=\frac{23}{8.24}
\end{aligned}
$$

6. The Maclaruin series for the funciton $\ln (x+1)$ is below. Find the interval of convergence.

$$
x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots=\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

$$
x=1 \Rightarrow
$$

$$
\sum \frac{\sum(-1)^{n+1}(1)^{n}}{n}=\sum \frac{(-1)^{n+1}}{n}
$$

$$
\sum_{n=1}^{\infty}-\frac{1}{n}=-\sum_{n=1}^{\infty} \frac{1}{n}
$$

7. Use the expansion above to find a series that converges to $\ln 2$.
$\sin \quad x=1 \quad \ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$
8. Prove the following (most beautiful) equation is true:

$$
e^{i \pi}+1=0 .
$$

Hint: Find Maclaurin series for $e^{x}, \cos (x)$ and $\sin (x)$. Then evaluate the series for e^{x} at $x=i \theta$. Finally, evaluate this series at $\theta=\pi$.

$(i)^{2}=-1$

Alti senles

$$
\sum(-1)^{n} \cdot b_{n}
$$

$$
\sum \frac{(-1)^{n+1}}{n}=\sum(-1)^{n} \cdot \frac{1}{n}
$$

If bu $\longrightarrow 0$
Converges.

$$
\frac{1}{n} \longrightarrow 0
$$

Monday week 11
Plan:
M Review of Study Guile
T office: 10 am
W Exams Office Hours: $8: 38 \mathrm{pm}$
th Exams
F Exams

MA 163 Exam 3 Guide

1. Find the third degree Taylor polynomial for $x^{3 / 2}$ about $x=1$.
what:

$$
\sum_{n=0}^{\text {what! }} \frac{f^{(n)}(1)(x-1)^{n}}{n!} \quad w / \quad f(x)=x^{3 / 2}
$$

$$
\begin{aligned}
& f(x)=x^{3 / 2} \\
& f^{\prime}(x)=\frac{3}{2} x^{1 / 2} \\
& f^{\prime \prime}(x)=\frac{3}{4} x^{-1 / 2} \\
& f^{\prime \prime \prime}(x)=-\frac{3}{8} x^{-3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=1 \\
& f^{\prime}(1)=\frac{3}{2}=1+\frac{3}{2}(x-1)+\frac{3}{2!\cdot 4}(x-1)^{2}-\frac{3}{3!-8}(x-1)^{3} \\
& f^{\prime \prime}(1)=\frac{3}{4}=1+\frac{3}{2}(x-1)+\frac{3}{8}(x-1)^{2}-\frac{3}{48}(x-1)^{3}
\end{aligned}
$$

$$
f^{\prime \prime \prime}(1)=-\frac{3}{8}
$$

2. Use integrals to estimate the series below to within 0.001 of the actual value.

$$
\sum_{n=4}^{+\infty} \frac{1}{4 n^{3}}
$$

(1) Find n sit. $\frac{1}{4 n^{3}}<0.001$, split series, approximate the $2^{n} \frac{1}{4 n^{3}}$ portion $w /$ an integral.

The series = Area of Rectangles

$$
\frac{1}{4.7^{3}}<.001
$$

recopy $\tau+\frac{1}{4.7^{3}}=\sum_{n=4}^{\infty} \frac{1}{4 n^{3}}<\frac{1}{4.4^{3}}+\frac{1}{4.5^{3}}+\frac{1}{4.6^{3}}+\frac{1}{4.7^{3}}+\int_{\frac{1}{7}}^{4 x^{3}} \frac{1}{4} d x$

Ans. is inside

$$
(.80941,0103)
$$

$$
1.001-1
$$

$$
\begin{aligned}
\frac{1}{4} \int_{7}^{\infty} x^{-3} d x=\frac{-1}{2} \frac{1}{4} x^{-2} & =\left.\frac{-1}{8} x^{-2}\right|_{7} ^{\infty} \\
=\frac{-1}{8}\left(\frac{1}{\infty^{2}}-\frac{1}{7^{2}}\right) & =\frac{-1}{8}\left(-\frac{1}{49}\right) \\
& =\frac{1}{392}
\end{aligned}
$$

3. The Maclaurin series for $\cos x$ is below.

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{+\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Find the interval of convergence.
\downarrow increment
Ratio: $\left|\frac{a_{n+1}}{a_{n}}\right| \longrightarrow \underset{n \rightarrow \infty}{ }$
abs value \Rightarrow ignore $(-1)^{n}$

$$
\begin{aligned}
& \left|\frac{x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{x^{2 n}}\right|=\left|\frac{x^{2 n+2} \cdot(2 n)!}{(2 n+2)!x^{2 n}}\right|=\left|\frac{x^{2 n} \cdot x^{2} \cdot(2 n)!}{(2 n+2)(2 n+1)(2 n)!x^{2 n}}\right| \\
& =\left|\frac{x^{2}}{(2 n+2)(2 n+1)}\right| \xrightarrow[n \rightarrow \infty]{ }\left|\frac{x^{2}}{\infty}\right| \rightarrow 0 \\
& \Rightarrow \text { Int. of Cons }=(-\infty, \infty)
\end{aligned}
$$

4. Use the series above to obtain an estimate for $\cos \left(\frac{1}{2}\right)$ to within 0.01 of the actual vallue.

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{n} & =\frac{1}{2^{n} \cdot n!}<\frac{1}{160} \\
\cos (1 / 2) & \approx 1-\frac{(1 / 2)^{2}}{2!}+\frac{(1 / 2)^{4}}{4!}
\end{aligned}
$$

$$
\begin{aligned}
& n=1 \\
& n=2 \\
& n=3 \\
& n=4
\end{aligned} \rightarrow \frac{1}{16.4!}=\frac{1}{16.24}<\frac{1}{100}
$$

5. Use an eighth degree Taylor polynomial to estimate

$$
\begin{aligned}
& \text { use phenols: } \quad \int_{0}^{1} \frac{\cos \left(x^{2}\right)-1}{x} d x= \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
& \begin{aligned}
& \cos \left(x^{2}\right)=1-\frac{x^{4}}{2!}+\frac{x^{8}}{4!} \\
&=\int_{0}^{11-\frac{x^{4}}{2!}+\frac{x^{8}}{4!}-1} \\
&=\frac{-x^{4}}{8}+\frac{x^{8}}{8 \cdot 24}
\end{aligned} 10
\end{aligned}
$$

6. The Maclaruin series for the funciton $\ln (x+1)$ is below. Find

7. Prove the following (most beautiful) equation is true:

$$
e^{i \pi}+1=0
$$

Hint: Find Maclaurin series for $e^{x}, \cos (x)$ and $\sin (x)$. Then evaluate the series for e^{x} at $x=i \theta$. Finally, evaluate this series at $\theta=\pi$.
see notes

