163 Take Home Exam - Arc Length

1. Use the formula for arc length and the equation $x^{2}+y^{2}=R^{2}$ to derive the formula for the circumference of a circle with radius R.
2. Sketch and find the arc length of the curve below.

$$
x=\cos ^{3} t, y=\sin ^{3} t
$$

3. Show that the exact length of the curve below is 2 .

$$
y=\sqrt{x-x^{2}}-\sin ^{-1}(\sqrt{x})
$$

163 Take Exam 3 - Surface of a Revolution

1. Use the formula for surface area and the equation $x^{2}+y^{2}=R^{2}$ to derive the formula for the surface area of a sphere with radius R.
2. Find the surface area of the solid obtained by revolving the curve $y=\sin ^{3} t, x=\cos ^{3} t$ about the x-axis.
3. Gabriel's horn is formed by taking the graph of $y=\frac{1}{x}$ for $x \geq 1$ and rotationg it about the x-axis.
(a) Find the volume of Gabriel's Horn.
(b) Set up an integral that represents the surface area of Gabriel's Horn.
(c) Show that the surface area of Gabriel's Horn is infinite.

$$
\text { Hint }: \sqrt{1+\frac{1}{x^{4}}}>1 \text { for all } x \geq 1
$$

163 Take Home Exam - Differential Equations

Solve the following initial value problems. The first two are separable differential equations, and the last two are first order linear differential equations.

1. $\frac{d y}{d x}=\frac{\sin x}{\cos y} ; y(0)=\pi$
2. $\frac{d y}{d x}=\frac{\left(y^{2}+1\right) \sec ^{2} x}{y} ; y(0)=0$

$$
\text { 3. } y^{\prime}-4 y=8 x, y(0)=5
$$

4. $y^{\prime}-\frac{3}{x} y=4, y(1)=7$

163 Take Home Exam - Centers of Mass

1. Find the centroid of the region bounded by $y=4-x^{2}$ and the x-axis.
