10 am section below

1 pm section at end

MA161 - Week 14 - Monday
Take-Home:

- Wed classtime or Thurs classtine
- Questions
\#z: Hint: It's a mistake to get 0 for your answer (length) 2
yovil see
something like $\int_{0}^{\sin ^{2}(t)}=\int_{0}^{2 \pi}|\sin (t)| d t$

$$
=\int_{0}^{\pi} \sin (t) d t+\int_{\pi}^{2 \pi}-\sin (t) d t
$$

alternatively:
Total length $=4$ times length of one arc

$$
\left\{=4 \times \square=4 \int_{0}^{\pi / 2} \sin (t) d t\right.
$$

Last Week
Review all week

- Monday - Exam 1 / General Overview of Course

Final Exam Covers :

Exam 1	Exam 2	Exam 3
Integration define:	Sequences / Series	Power Senses / Taylor
Series		

Integratui
Def'n: The Indefinte: $\int f(x) d x=F(x)$ w/ $F^{\prime}(x)=f(x)$
Dof'n the definito: $\quad \int_{a}^{b} f(x) d x=$ Area under gragh of curre $y=f(x)$
Findrante Calculus: $\quad \int_{a}^{b} f(x) d x=F(b)-F(a)$

Techniques:

- u-sul / memorrzins forms (st $^{\text {st }}$ try, identifins derirative deque-1 difference relationshos)
- Tres sub/ int. by parts 1 partial fractions

Common Forms

$$
u=u(x)
$$

$$
\begin{aligned}
& \int x^{n} d u=\frac{u^{n+1}}{n+1}+c \\
& \int \sin (n) d n=-\cos (n)+c \\
& \int \cos (u) d u=\sin (u)+c \\
& \int \tan ^{\prime \prime}(u) d u=-\ln (u) \cos (u)|+c=\ln | \sec (u)+c \\
& \int \sec (u) \tan (u) d u=\sec (u)+c \\
& \int \sec ^{2}(n) d n=\tan (n)+c \\
& \int \sec (u) d u=\ln |\sec (u)+\tan (u)|+c \quad \text { start: } y=\tan ^{-1}(u) \\
& \text { (multiple) } \frac{\text { top }}{\text { bottom }} \text { by } \sec (n)+\tan (n) \\
& \int e^{u} d u=e^{u}+c \\
& \text { (multi) } \frac{\text { top }}{\text { bottom }} \text { by } \sec (n)+\tan (h) \\
& \int \frac{1}{1+u^{2}} d u=\tan ^{-1}(u) \\
& \int \frac{1}{u \sqrt{u^{2}-1}} d u=\sec ^{-1}(u) \\
& \text { These can be found by: } \\
& \text { start: } y=\tan ^{-1}(u) \\
& \text { - goal find } y^{\prime}=\frac{d y}{d x} \\
& \left.\begin{array}{l}
\tan (y)=u \\
\frac{d}{d x}(\tan (y))=\frac{d}{d x}(u) \\
(\operatorname{chain} \text { rule } \\
\sec ^{2}(y) \cdot y^{\prime}=\frac{d u}{d x} \\
\text { - } y^{\prime}=\frac{1}{\sec ^{2}(y)} \cdot \frac{d u}{d x}
\end{array} \right\rvert\, \begin{array}{l}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\div \cos \theta \downarrow \\
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array} \\
& \left.\begin{array}{l|l}
\tan (y)=u \\
\frac{d}{d x}(\tan (y))=\frac{d}{d x}(u) & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\left(\operatorname{chain}^{2} r u l e\right. \\
\sec ^{2}(y) \cdot y^{\prime}=\frac{d u}{d x} \\
-y^{\prime}=\frac{1}{\sec ^{2}(y)} \cdot \frac{d u}{d x}
\end{array} \right\rvert\, \begin{array}{l}
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array} \\
& \left.\begin{array}{l|l}
\tan (y)=u \\
\frac{d}{d x}(\tan (y))=\frac{d}{d x}(u) & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\left(\operatorname{chain}^{2} r u l e\right. \\
\sec ^{2}(y) \cdot y^{\prime}=\frac{d u}{d x} \\
-y^{\prime}=\frac{1}{\sec ^{2}(y)} \cdot \frac{d u}{d x}
\end{array} \right\rvert\, \begin{array}{l}
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array} \\
& \left.\begin{array}{l|l}
\tan (y)=u \\
\frac{d}{d x}(\tan (y))=\frac{d}{d x}(u) & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\left(\operatorname{chain}^{2} r u l e\right. \\
\sec ^{2}(y) \cdot y^{\prime}=\frac{d u}{d x} \\
-y^{\prime}=\frac{1}{\sec ^{2}(y)} \cdot \frac{d u}{d x}
\end{array} \right\rvert\, \begin{array}{l}
\tan ^{2} \theta+1=\sec ^{2} \theta
\end{array} \\
& =\frac{1}{\tan ^{2} \theta+1} \cdot \frac{d n}{d x} \\
& =\frac{1}{u^{2}+1} \cdot \frac{d u}{d x} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \div \cos \theta \downarrow \\
& \tan ^{2} \theta+1=\sec ^{2} \theta
\end{aligned}
$$

E×

$$
\begin{align*}
& \int e^{3 x+5} d x=\int e^{u} \cdot \frac{1}{3} d u=\frac{1}{3} \int e^{u} d u=\frac{1}{3} e^{u}+c=\frac{1}{3} e^{3 x+5}+c \\
& a=3 x+\frac{1}{3} d u=d x \tag{1}
\end{align*}
$$

Ey

$$
\begin{aligned}
& \frac{1}{2} \int 2 x \cdot \sec \left(e^{x^{2}}\right) \tan \left(e^{x^{2}}\right) \cdot e^{x^{2}} d x=\frac{1}{2} \int \sec (u) \tan (u) d u \\
& u=e^{x^{2}} \\
& d u=e^{x^{2}} \cdot 2 x \cdot d x=\frac{1}{2} \sec \left(e^{x^{2}}\right)+c
\end{aligned}
$$

(1)

Ex

$$
\int \frac{1}{x \sqrt{x^{6}-1}} d x
$$

$$
\underset{t_{0}}{\operatorname{similar}} \int \frac{1}{u \sqrt{u^{2}-1}} d u
$$

1
(2) think:

$$
\int \frac{1}{x \sqrt{u^{2}-1}} \cdot \frac{1}{3 x^{2}} d u
$$

$$
\begin{aligned}
& u=x^{3}-u^{2}=x^{6} \\
& d u=3 x^{2} d x \\
& \frac{1}{3 x^{2}} d u=d x
\end{aligned}
$$

$$
\frac{1}{3} \int \frac{1}{u \sqrt{u^{2}-1}} d u
$$

$$
=\frac{1}{3} \sec ^{-1}(n)+c=\frac{1}{3} \sec ^{-1}\left(x^{3}\right)+c
$$

Trig sub / int, by parts
(From study guide \#1)

$$
\begin{aligned}
& \int \sin ^{5} \theta d \theta=\int \sin \theta \cdot \sin ^{2} \theta \cdot \sin ^{2} \theta d \theta \\
& \text { oed power }{ }^{\text {I }} \\
& =\int \sin \theta\left(1-\cos ^{2} \theta\right)\left(1-\cos ^{2} \theta\right) d o \\
& =\int \sin \theta\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right) d \theta \\
& u=\cos \theta \\
& d u=-\sin \theta d o \\
& -\frac{1}{\sin \theta} d u=d \theta \\
& =-\int\left(1-2 u^{2}+u^{4}\right) d u \\
& =-\left(u-\frac{2}{3} u^{3}+\frac{u^{5}}{5}\right)+c=-\left(\cos \theta-\frac{2}{3} \cos ^{3} \theta+\frac{\cos ^{5}}{5}\right)+c
\end{aligned}
$$

Trig sub:
patterns

If given. range of sub

$$
\begin{aligned}
& \int \sqrt{x=\sec \theta} \int \frac{1}{x^{2}-1} d x \quad d x \\
& \int \sqrt{1+x^{2}} d x \int \frac{1}{\sqrt{1+x^{2}}} d x \\
& \int \sqrt{1+x^{2}} d x \int \frac{1}{\sqrt{1+x^{2}}} d x \\
& \int \begin{array}{ll}
\sqrt{1-x^{2} d x} & x=\sin \theta \\
d x=\cos \theta d \theta
\end{array} \int_{11}^{\sqrt{1-x^{2}}} \quad \frac{1}{\theta} \sin \theta=\frac{x}{1}=x \\
& \int \cos ^{2} \theta d \theta \\
& \theta=\sin ^{-1} x \\
& \cos \theta=\sqrt{1-x^{2}} \\
& 2 \sin \theta \cdot \cos \theta \\
& \int^{\prime \prime} \frac{1+\cos 2 \theta}{2} d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin ^{\prime \prime} 2 \theta+c \\
& =\frac{1}{2} \sin ^{-1} x+\frac{1}{4} \cdot 2 \cdot x \cdot \sqrt{1-x^{2}}+c \\
& =-\frac{1}{2} \sin x+\frac{1}{2} x \sqrt{x^{2}-1}+c
\end{aligned}
$$

1 pm section below

MAG - Week 14 - Monday
Take-Home Exam:

1. Wed classtime or Thurs. Classtime
2.93-thing: Calculated after Talce-Home,
2. Questions: differential equations

Final Exam:

Differential Equations：
separable

$$
\begin{array}{r}
y^{\prime}=f(x) \cdot g(y) \\
y(0)=1
\end{array}
$$

Initial Value
problem
find precise
C that
makes it wort
Ex，Solve the I，V, P ．

$$
\begin{gathered}
y^{\prime}=(x+1) \cdot(y-3) \\
y(2)=33
\end{gathered}
$$

1．separate！

$$
\begin{gathered}
\frac{y^{\prime}}{y-3}=x+1 \\
y^{\prime}=\frac{d y}{d x} \text { 玄 integrate wot } x \\
\int \frac{d x}{y-3} \frac{d y}{d x} \cdot d x=\int x+1 d x \\
\int \frac{d y}{y-3}=\int x+1 d x
\end{gathered}
$$

1st order linear

$$
\begin{gathered}
y^{\prime}+p(x) y=q(x) \\
y(1)=5
\end{gathered}
$$

Ex $\quad y^{\prime}-x^{2} y=3 x$

$$
y(1)=2
$$

F. O.L \Rightarrow Integrating Factor! $e^{\int p(x) d x}$, multiply both sides
(1) $\left.5-x^{2} d x=e^{-x^{3} / 3} \quad \begin{array}{cc}\text { or } c=0 \\ \text { ignore } & c\end{array}\right)$
(2)

$$
\begin{aligned}
& e^{-x^{3} / 3}\left(y^{\prime}-x^{2} y\right)=e^{-x^{3} / 3} \cdot 3 x^{2} \\
& e^{-x^{3} / 3} \cdot y^{\prime}-e^{-x^{3} / 3} \cdot x^{2} y=
\end{aligned}
$$

Not a n-sub...

$$
I, B, P_{-}
$$

\qquad

$$
\star
$$

product
(3) $\frac{\text { rule }}{d x}\left(y \cdot e^{\frac{-x^{3}}{3}}\right)=e^{-\frac{x^{3}}{3}} \cdot 3 x^{2}$
(4) goal: find y, integrate \int LHS $d x=y \cdot e^{\frac{-x}{3}}=-3 e^{\frac{-x^{3}}{3}}+c$
(t) SRHS $=3 \int e^{-\frac{x^{3}}{3}} \cdot x^{2} d x$

$$
u v-\int v d u=\int u d v
$$

$=-3 \int e^{u} d u$

$$
=-3 e^{-x^{3} \frac{3}{3}}+c
$$

(5) $y=-3+c \cdot e$
F.V.P $y=2$ if $x=1$

$$
2=-3+c \cdot e^{1 / 3}
$$

$$
\frac{5}{e^{1 / 3}}=5 e^{-1 / 3}=c
$$

(6)

$$
\begin{aligned}
& y=5 e^{-1 / 3 e^{x^{3} / 3}}-3 \\
& y=5 e^{\frac{x^{3}-1}{3}}-3
\end{aligned}
$$

Final, trig sub patterns Exam

$$
\begin{aligned}
& \int \sqrt{1+x^{2}} d x \\
& \text { domain } \int \frac{1}{\sqrt{1+x^{2}}} d x
\end{aligned} \quad \int \sqrt{4+x^{2}} d x
$$

$$
\begin{gathered}
\int \sqrt{x=a \sin \theta} \\
\int \sqrt{a^{2}-x^{2}} d x \quad \text { or } \quad \int \sqrt{1-x^{2}} d x \\
\int \sqrt{x^{2}-a^{2}} d x \quad \text { or } \quad \int \sqrt{x^{2}-1} d x
\end{gathered}
$$

