Integration by parts-guidelines

Example:

$$
\int x \ln x d x=? ?
$$

First "select" your u and $d v$.
Selection guidelines: the derivative of u should be less complex than u, your $d v$ should have a relatively simple antiderivative, and you need to "use up" everything in the integral sign. For Math 134-following "LIPET" to pick your u normally works:
$\mathrm{L} \Longrightarrow$ logarithmic functions
$\mathrm{I} \Longrightarrow$ inverse trigonometric functions
$\mathrm{P} \Longrightarrow$ polynomials
$\mathrm{E} \Longrightarrow$ exponential functions
$\mathrm{T} \Longrightarrow$ trigonometric functions
Then find $d u$ and v based on your selection.

$$
\begin{array}{ll}
u=\ln x & d v=x d x \\
d u=\frac{1}{x} d x & v=\int x d x=\frac{1}{2} x^{2}
\end{array}
$$

Now apply the integration by parts rule $\int u d v=u v-\int v d u$ to get

$$
\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} * \frac{1}{x} d x
$$

So
$\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x d x=\frac{1}{2} x^{2} \ln x-\left(\frac{1}{2}\right)\left(\frac{x^{2}}{2}\right)+\mathrm{C}=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+\mathrm{C}$
Check:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}\right)=\frac{d}{d x}\left(\frac{1}{2} x^{2} \ln x\right)-\frac{d}{d x}\left(\frac{1}{4} x^{2}\right) \\
= & x \ln x+\left(\frac{1}{2} x^{2}\right)\left(\frac{1}{x}\right)-\frac{1}{4}(2 x)=x \ln x+\frac{1}{2} x-\frac{1}{2} x=x \ln x
\end{aligned}
$$

