some basic integration-by-parts problems

1.

$$
\begin{gathered}
\int x^{2} \ln x d x=\frac{1}{3} x^{3} \ln x-\int \frac{1}{x} \cdot \frac{1}{3} x^{3} d x=\frac{1}{3} x^{3} \ln x-\int \frac{1}{3} x^{2} d x \\
=\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+C \\
u=\ln x \quad \text { and } \quad d v=x^{2} d x \\
d u=\frac{1}{x} d x \quad \text { and } \quad v=\frac{1}{3} x^{3}
\end{gathered}
$$

2.

$$
\begin{gathered}
\int \ln x d x=x \ln x-\int \frac{1}{x} \cdot x d x=x \ln x-\int 1 d x=x \ln x-x+C \\
u=\ln x \quad \text { and } \quad d v=d x \\
d u=\frac{1}{x} d x \quad \text { and } \quad v=x
\end{gathered}
$$

3.

$$
\begin{gathered}
\int \tan ^{-1} x d x=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x=x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C \\
u=\tan ^{-1} x \quad \text { and } \quad d v=d x \\
d u=\frac{1}{1+x^{2}} d x \quad \text { and } \quad v=x
\end{gathered}
$$

4.

$$
\begin{aligned}
& \int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C \\
& u=x \quad \text { and } \quad d v=e^{x} d x \\
& d u=d x \quad \text { and } \quad v=e^{x}
\end{aligned}
$$

5. After applying integration by parts, use your answer from \#4.

$$
\begin{gathered}
\int x^{2} e^{x} d x=x^{2} e^{x}-\int 2 x e^{x} d x=x^{2} e^{x}-2\left(x e^{x}-e^{x}\right)+C \\
=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C \\
u=x^{2} \quad \text { and } \quad d v=e^{x} d x \\
d u=2 x d x \quad \text { and } \quad v=e^{x}
\end{gathered}
$$

6.

$$
\begin{gathered}
\int 2 x \sec ^{-1} x d x=x^{2} \sec ^{-1} x-\int \frac{x^{2}}{x \sqrt{x^{2}-1}} d x \\
=x^{2} \sec ^{-1} x-\int \frac{x}{\sqrt{x^{2}-1}} d x=x^{2} \sec ^{-1} x-\sqrt{x^{2}-1}+C \\
u=\sec ^{-1} x \\
d u=\frac{1}{x \sqrt{x^{2}-1}} d x \quad \text { and } \quad d v=2 x d x \\
\end{gathered}
$$

