Plan'
Exam: Feb. 10/11
warm-up Fel-week 2

$$
\int \frac{\ln (x)}{\sqrt{x}} d x
$$

Fel-week 2		
Josh		
Alex	Tyler	Nick
Lauren		Frena

warm-up
FR1-week 2

$$
\int \frac{\ln (x)}{\sqrt{x}} d x=2 \sqrt{x} \cdot \ln (x)-\int \frac{1}{x} \cdot 2 x^{\frac{1}{2}} d x=
$$

$$
\begin{aligned}
& \text { LIPET } \\
& \begin{aligned}
& u=\ln (x) \\
& d u=\frac{1}{x} d x \left\lvert\, \begin{array}{l}
d v=\frac{1}{\sqrt{x}} d x \\
\int x^{-1 / 2} d x=2 x^{\frac{1}{2}}| |
\end{array}\right. 2 \sqrt{x} \ln (x)-2 \int x^{-\frac{1}{2}} d x \\
&=\partial \sqrt{x} \ln (x)-2 \cdot 2 x^{\frac{1}{2}}+c \\
&=2 \sqrt{x} \ln (x)-4 \sqrt{x}+c \\
&=2 \sqrt{x}(\ln (x)-2)
\end{aligned}
\end{aligned}
$$

$$
\frac{1}{d x}(\text { ans })=x^{-\frac{1}{2}}(\ln (x)-\partial)+\partial \sqrt{x}\left(\frac{1}{x}\right)=\frac{\ln (x)}{\sqrt{x}}-\underbrace{\partial x^{-1 / 2}+\partial x^{-1 / 2}}=\frac{\ln (x)}{\sqrt{x}}
$$

Ex:

$$
\begin{aligned}
& \int \sin (\ln (x)) d x \\
& u=\sin (\ln (x)) \quad d v=d x \\
& d u=\frac{\cos (\ln (x))}{x} \quad r=x \\
& \int \sin (\ln (x)) d x=x \cdot \sin (\ln (x))-\int x \cdot \frac{\cos (\ln (x))}{x} d x \\
& =x \cdot \sin (\ln (x))-\int \cos (\ln (x)) d x= \\
& \left.\begin{array}{l}
u=\cos (\ln (x)) \\
d u=\frac{-\sin (\ln (x))}{x} d_{x}
\end{array} \right\rvert\, \begin{array}{c}
d v=d x \\
v=x
\end{array} \|=x \cdot \sin (\ln (x))=\left[x \cdot \cos (\ln (x))-\int x\left(\frac{(-\sin (\ln (x))}{x} d x\right]\right. \\
& =x \cdot \sin (\ln (x))-x \cdot \cos (\ln (x)) \quad \int \sin (\ln (x)) d x
\end{aligned}
$$

$$
\begin{array}{r|r}
A=\operatorname{stuff}-A \\
2 A & =\operatorname{stuff} \\
A & =\frac{\operatorname{stnff}}{2}
\end{array} \left\lvert\, \begin{aligned}
& \text { adding } \int \sin (\ln (x)) d x: \\
&
\end{aligned} \quad \begin{aligned}
& \quad \int \sin (\ln (x)) d x=\frac{x(\sin (\ln (x))-\cos (\ln (x))}{2}
\end{aligned}\right.
$$

$\int_{a}^{b} f(x) d x=\#$, the signed area under the curve

$$
+\left.\Rightarrow\right|_{1 / 1}
$$

https://www.desmos.com/
calculator/qi801rdjpu

Set $\begin{aligned} a & =0 \quad(u=x) \\ b & =x \quad\end{aligned}$
$\int_{0}^{x} f(u) d u=$ Area so-far function $\left\lvert\, \begin{gathered}\text { start @ © move night to } x \\ \text { - this is the (signed) area. }\end{gathered}\right.$

$$
\int_{0}^{x} \sin (\ln (u)) d u=\underbrace{\frac{x}{2}(\sin (\ln (x))-\cos (\ln (x)))}_{\text {the area so far ... up to } x}
$$

To see where the area above = area below set $=0$

set $b=\frac{\pi}{2}$

$$
\sin \left(a+\frac{\pi}{2}\right)=\sin (a) \cdot \underbrace{\cos \left(\frac{\pi}{2}\right)}_{0}+\underbrace{\sin \left(\frac{\pi}{2}\right)}_{1} \cdot \cos (a)=\cos (a)
$$

Next

$$
\begin{gathered}
\ln (x)=\frac{5 \pi}{4} \\
x=e^{5 \pi / 4}
\end{gathered}
$$

If $\ln (x)=\frac{\pi}{4} \leftarrow \underset{\sin e}{\sin }$ then $h(x)+\frac{\pi}{2}=\frac{3 \pi}{4} d$ $\ln (x)=\frac{\pi}{4}$

$$
\begin{aligned}
e^{\ln (x)} & =e^{\pi / 4} \\
x & =e^{\pi / 4} \approx 2
\end{aligned}
$$

