warm-up:

$$
\begin{aligned}
& \int \sin _{11}^{2} x d x \\
& \int \frac{1-\cos ^{2} x}{2} d x \\
& \frac{1}{2} \int d x-\frac{1}{2} \frac{1}{2} \underbrace{\int} \underbrace{\cos (2 x)}_{\cos (u) d u} \quad d x=2 d x \\
& \frac{1}{2} x-\frac{1}{4} \sin (2 x)+C
\end{aligned}
$$

seating chart

John

Ryan

Katie

Grace
Liam
Oliver
Andrea

TRICG Ints
I. Review: Basic Computations (eg $\left.\left.\int \cos (u) d u, \int \sin (u) d u\right)\right) \frac{\int}{4} u^{n} u-\operatorname{sub}$.
II. Products of $\sin ^{i}(x) \cdot \cos ^{j}(x)$. Integrals of these are comnoun (physirs $\begin{aligned} & \text { engineeriz) }\end{aligned}$
(1) $\int \sin (x) \cos (x) d x$ Recosnize $u-d u$ relabouship

$$
u=\sin (x)
$$

$$
\begin{aligned}
& =\int u^{\prime} d u \\
& =\frac{d u}{d x}=\cos (x), d u=\cos (x) d x \\
& =\frac{u^{2}}{2}+c=\frac{(\sin (x))^{2}}{2}+c
\end{aligned}
$$

(or)

$$
\left.\begin{array}{l}
w=\cos (x) \\
d w=-\sin (x) d x
\end{array}\right\}=\int w(-1) \cdot d w=-\frac{w^{2}}{2}+c=-\frac{(\cos (x))^{2}}{2}+D
$$

(o)

$$
\begin{aligned}
& \begin{array}{l}
\left.\frac{\sin (2 a)}{2}=\sin (a) \cos (b) \right\rvert\, \stackrel{\text { pubblem }}{=} \int \frac{1}{2}(\sin (2 x) d x=
\end{array}=\frac{1}{2} \int \sin (2 x) d x \\
& \left.\begin{array}{r}
u=2 x \\
=\frac{1}{4} \int \sin (2 x) \cdot 2 d x \\
\\
\\
\\
d u=2 d x
\end{array}\right\}=-\frac{1}{4} \int \sin (u) d u
\end{aligned}
$$

(2)

$$
\begin{aligned}
\int \sin ^{3}(x) d x & =\int \sin (x) \cdot \sin ^{2}(x) d x \\
\int \sin (x) \cdot \frac{1-\cos (2 x)}{2} d x & \int \sin (x) \cdot\left(1-\cos ^{2}(x)\right) d x \\
& =\int \sin (x) d x-\int \cos ^{2}(x) \cdot \sin (x) d x \\
& =-\cos (x)+\int u^{2} d u \\
& =-\cos (x)+\frac{u^{3}}{3} \\
& =-\cos (x)+\frac{\cos (x)}{3}+c
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \begin{array}{c}
\int \sin ^{2} x \cos ^{2} x d x=\int\left[\frac{1-\cos (2 x)}{2}\right] \cdot\left[\frac{1+\cos (2 x)}{2}\right] d x \\
\text { Half-Angle }
\end{array} \\
& =\frac{1}{4} \int(1-\cos (2 x))(1+\cos (2 x)) d x=\frac{1}{4} \int 1-\cos ^{2}(2 x) d x \\
& =\frac{1}{4} \int d x-\frac{1}{4} \int \cos ^{2}(2 x) d x=\begin{array}{c}
4 \\
\substack{\text { repeat } \\
\frac{1}{2} \text {-angle }}
\end{array} \\
& \begin{array}{c}
\frac{1}{2} \text {-angle } \\
\text { sub }
\end{array} \\
& =\frac{x}{4}-\frac{1}{8} \int 1 d x-\left(\frac{111}{4} \frac{1}{8} \int \cos (u) d x\right. \\
& =\frac{x}{4}-\frac{x}{8}-\frac{1}{32}(\sin (4 x))+c=\frac{x}{8}-\frac{1}{32}(\sin (4 x))+c
\end{aligned}
$$

(4)

$$
\int \cos ^{4}(x) d x=\int\left[\frac{1+\cos (2 x)}{2}\right]^{2}=\frac{1}{4} \int(1+\cos (2 x))^{2}
$$

$$
\begin{gathered}
=\frac{1}{4} \int_{n} 1+2 \cos (2 x)+\cos ^{2}(2 x) d x \\
\text { ez } \int_{n=2 x} \quad \int \cos (n) \quad 1 / 2 \text { angle sun } \\
\end{gathered}
$$

stop here for today
$=$

This ore requires a new idea (also useful fr $\int \csc (x) d x$

$$
\begin{aligned}
\int \sec (x) d x & =\int \sec (x) \cdot \frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)} d x \\
& =\int \frac{\sec ^{2}(x)+\sec (x) \tan (x)}{\tan (x)+\sec (x)} d x \\
u=\tan (x)+\sec (x) & =\int \frac{d u}{u}+c \\
d u=\sec ^{2}(x)+\sec (x) \tan (x) d x \mid & =\ln |\sec (x)+\tan (x)|+c
\end{aligned}
$$

$\frac{1}{x}$

if $\int \frac{1}{x} d x=\ln (x)$
$\frac{d}{d x}$
$\frac{1}{x}$

Wed. week 2
warm-up

$$
\begin{array}{l|}
\int \sin ^{2} x d x \\
\int \frac{1-\cos (2 x)}{2} d x \\
\frac{1}{2} \int 1-\cos (2 x) d x \\
\frac{1}{2} \int 1 d x-\frac{1}{2} \frac{1}{2} \int \cos (2 x) 2 d x \\
\begin{array}{c}
u=2 x \\
d u=2 d x
\end{array} \\
\frac{x}{2}-\frac{1}{4} \int \cos (u) d u=: \frac{x}{2}-\frac{1}{4} \sin (2 x)+c
\end{array}
$$

I. Basics ($\left.\int \sin (u) d u, \int \cos (u) d u\right) \| u-\operatorname{sub}$ (You)
II. $\int \sin ^{i}(x) \cos ^{j}(x) d x$ (these pop-up in physils/elec engincer?
(1)

$$
\begin{array}{lc}
\int \sin (x) \cos (x) d x & u=\sin x \\
=\int u d u=\cos x d x \\
=\frac{u^{2}}{2}+c=\frac{\sin ^{2}(x)}{2}+C
\end{array}
$$

$$
n=\cos x
$$

$$
-d u=\sin x d x
$$

$$
\iint \sin x \cos x d x=\int u(-d u)
$$

$$
=-\int u d u=-\frac{u^{2}}{2}+c
$$

$$
\sin ^{2} x=1-\cos ^{2} x \quad=-\frac{\left(\cos ^{2}(x)\right)}{2}+c
$$

or donble angle

$$
\begin{aligned}
\int \sin (x) \cos (x) d x=\frac{1}{2} \int \frac{1}{2} \sin (2 x) d d x & =\frac{1}{4} \int \sin (u) d u \\
n & =2 x \\
d u=2 d x & =-\frac{1}{4} \cos (u)+C \\
& =-\frac{1}{4} \cos (\partial x)+C
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int \sin ^{2}(x) \cos (x) d x=\underbrace{\text { Recosnice single poner of cos }(x)} \begin{array}{l}
\text { it can be into duborbel } u 1 \\
n=\sin (x) \\
d u=\cos (x) d x
\end{array} \\
& \int \frac{1-\cos (2 x)}{2} \cdot \cos (x) d x \\
& \text { dead end }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \int \sin ^{2}(x) \cos ^{2}(x) d x \\
& \int\left[\frac{1-\cos (2 x)}{2}\right] \cdot\left[\frac{1+\cos (2 x)}{2}\right] d x \\
& \frac{1}{4} \int\left(1-\cos (2 x)(1+\cos (2 x)) d x=\frac{1}{4} \int 1-\cos ^{2}(2 x) d x\right. \\
& =\frac{1}{4} \int 1 d x-\frac{1}{4} \int \cos ^{2}(2 x) d x \\
& \frac{x}{4}-\frac{1}{4} \int \frac{1+\cos (4 x)}{2} d x \\
& \frac{x}{4}-\frac{1}{8} \int 1+\frac{1}{4} \int \sin ^{2}(2 x) d x \\
& \frac{x}{4}-\frac{x}{8}-\frac{1}{8}\left[\frac{1}{4} \frac{x}{2}-\frac{1}{4} \cos (4 x) d x\right. \\
& \left.\frac{n}{2}(2 x)\right]+c \\
& \left.\frac{n}{4}\right)=\sin ^{2}\left(\frac{\pi}{4}\right) \cdot 4 d x \\
& \frac{x}{4}-\frac{x}{8}-\frac{1}{32} \int \cos (4) d u \\
& \frac{x}{8}-\frac{1}{32} \sin (4 x)+c
\end{aligned}
$$

This ore inurives a new idea

$$
\begin{aligned}
& \int \sec (x) d x=\int \sec (x) \frac{\sec (x)+\tan (x)}{\sec (x)+\tan (x)} d x \\
& =\int \frac{\sec ^{2}(x)+\sec (x) \tan (x)}{\sec (x)+\tan (x)} d x \quad u=\sec (x)+\tan (x) \\
& d u=\sec x \tan x+\sec ^{2} x
\end{aligned}
$$

$\begin{aligned} & \text { see any derivatue } \\ & \text { relationships }\end{aligned} \quad=\int \frac{d u}{u}=\ln |\sec (x)+\tan (x)|+C$

$$
=\int \frac{d u}{u}=\ln |\sec (x)+\tan (x)|+c
$$

Note: this works for $\int \csc (x) d x$
Question: why the abs value?

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln (x) \\
\downarrow_{\downarrow}^{d / d x} \\
\frac{1}{x}=\frac{d}{d x}(\ln (x))
\end{gathered}
$$

$$
\begin{gathered}
\int \sec ^{3}(x) \tan (x) d x \\
\int \sec ^{2}(x) \cdot \sec (x) \tan (x) d x \\
114=\sec (x) \\
=\frac{u^{2} d u}{3}+c^{3} \\
=\frac{n^{3} x}{3}+c
\end{gathered}
$$

potential ideas:

1. $u=\tan x$ (fails b / c $d u=\sec ^{2} x \quad \frac{1}{s}$ weill have an extra $\sec (x)$)
2.

$$
\begin{aligned}
& u=\sec (x) \\
& d u=\sec (x) \tan (x)
\end{aligned}
$$

could this work?
3. $\sec ^{2} x-1=\tan ^{2} x$
(doubt it)

