partial fractions

Use the method of partial fractions (and polynomial division) to evaluate these integrals:
1.

$$
\int \frac{1-x}{x^{2}+3 x+2} d x
$$

work to pull apart original rational expression:

$$
\begin{aligned}
\frac{1-x}{(x+2)(x+1)}= & \frac{A}{x+2}+\frac{B}{x+1}=\frac{A(x+1)}{(x+2)(x+1)}+\frac{B(x+2)}{(x+1)(x+2)} \\
& \Longrightarrow 1-x=A(x+1)+B(x+2)
\end{aligned}
$$

When $x=-1,1-(-1)=A(-1+1)+B(-1+2) \Longrightarrow 2=B$.
When $x=-2,1-(-2)=A(-2+1)+B(-2+2) \Longrightarrow-3=A$.

$$
\begin{gathered}
\int \frac{1-x}{x^{2}+3 x+2} d x=\int \frac{2}{x+1}+\frac{-3}{x+2} d x \\
\quad=2 \ln |x+1|-3 \ln |x+2|+C
\end{gathered}
$$

2. Use your answer from \#1 after getting down to a proper rational function.

$$
\begin{gathered}
\int \frac{x^{3}+4 x^{2}+4 x+3}{x^{2}+3 x+2} d x=\int x+1+\frac{1-x}{x^{2}+3 x+2} d x \\
=\frac{1}{2} x^{2}+x+2 \ln |x+1|-3 \ln |x+2|+C
\end{gathered}
$$

3.

$$
\int \frac{x^{3}+1}{x^{3}-x^{2}} d x=\int 1+\frac{x^{2}+1}{x^{3}-x^{2}} d x
$$

work to pull apart the proper rational function:

$$
\begin{gathered}
\frac{x^{2}+1}{x^{2}(x-1)}=\frac{A x+B}{x^{2}}+\frac{C}{x-1}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1} \\
\frac{x^{2}+1}{x^{2}(x-1)}=\frac{A x(x-1)}{x^{2}(x-1)}+\frac{B(x-1)}{x^{2}(x-1)}+\frac{C x^{2}}{(x-1) x^{2}} \\
\Longrightarrow x^{2}+1=A x(x-1)+B(x-1)+C x^{2}
\end{gathered}
$$

We can plug in values for x, but in this case it's actually easier / faster to collect terms.

$$
\begin{gathered}
x^{2}+0 x+1=(A+C) x^{2}+(-A+B) x-B \\
\Longrightarrow-B=1,-A+B=0, \text { and } A+C=1 \\
\Longrightarrow B=-1, A=-1, C=2 \\
\int \frac{x^{3}+1}{x^{3}-x^{2}} d x=\int 1+\frac{x^{2}+1}{x^{3}-x^{2}} d x \\
=\int 1+\frac{2}{x-1}-\frac{1}{x}-\frac{1}{x^{2}} d x \\
=x+2 \ln |x-1|-\ln |x|+\frac{1}{x}+C
\end{gathered}
$$

4.

$$
\int \frac{x-2}{x^{3}+x} d x
$$

work to pull apart the proper rational function:

$$
\begin{gathered}
\frac{x-2}{x\left(x^{2}+1\right)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x}=\frac{(A x+B) x}{\left(x^{2}+1\right) x}+\frac{C\left(x^{2}+1\right)}{x\left(x^{2}+1\right)} \\
\Longrightarrow 0 x^{2}+x-2=(A+C) x^{2}+B x+C \\
\Longrightarrow A+C=0, B=1, \text { and } C=-2 \Longrightarrow A=2 \\
\int \frac{x-2}{x^{3}+x} d x=\int \frac{2 x+1}{x^{2}+1}+\frac{-2}{x} d x \\
=\int \frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}-\frac{2}{x} d x \\
=\ln \left(x^{2}+1\right)+\tan ^{-1} x-2 \ln |x|+C
\end{gathered}
$$

