MALLI WK 3

Today : Trig Sub Tornorrow ; Partial Fractions

When	to use trig sub & wh	ich one?	
	Integral contains	this	track to remember
Ø	$(\chi^a - Q^a)^{m/2}$	X=aseco	donrain (Taval integrand (trog function
ø	$(\alpha^2 - \chi^2)^{m/2}$	X=asin Q	

X² + 0²
 X² + 0²
 X² = 0.tand
 L unlimited range

Ex.
$$\int \frac{1}{x^2 \sqrt{x^2 - 49}} dx$$

$$= \int \frac{1}{x^2 \sqrt{x^2 - 49}} dx$$

$$= \int \frac{1}{x^2 \sqrt{x^2 - 49}} dx$$

$$= \int \frac{1}{49} \int \frac{1}{56(0)} dx$$

$$= \frac{1}{49} \int \frac{1}{x^2 - 49} dx$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

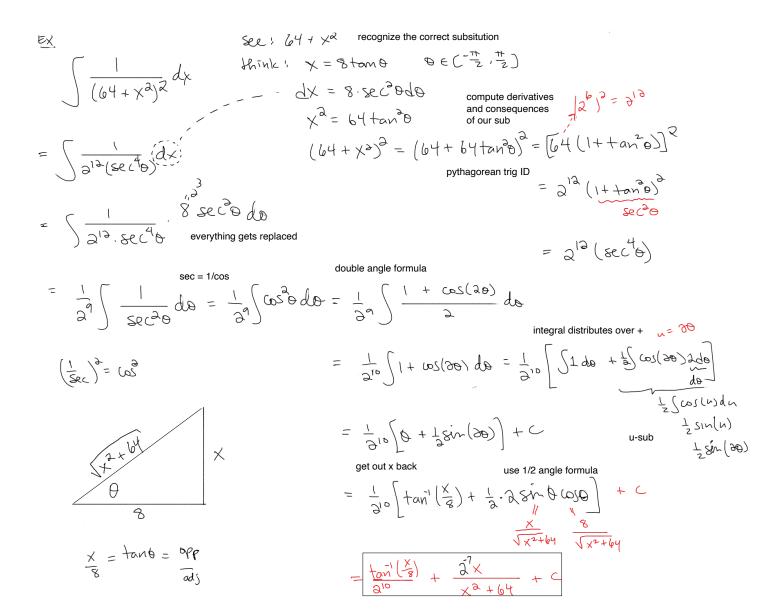
$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$


$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$= \frac{1}{49} \left(\frac{\sqrt{x^2 - 49}}{x} \right) + C$$

$$=$$

$$\frac{7-3-1}{Ex} \# 1$$

$$\frac{5-30x}{\sqrt{x^2-4}} dx$$

$$\frac{5}{\sqrt{x^2-4}} dx$$