sequences, ..., sequences, ...

1. Find the general term for each of the following sequences. Then determine whether or not the sequence converges. If the sequence does converge, find its limit.
(a)

$$
\begin{aligned}
& \left\{\frac{1}{4^{n}}\right\}_{n=1}^{\infty}=\frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \frac{1}{1024}, \ldots \\
& \lim _{n \rightarrow+\infty} \frac{1}{4^{n}}=0 \Longrightarrow \text { sequence converges to } 0
\end{aligned}
$$

(b)

$$
\begin{gathered}
\left\{\frac{n}{n+2}\right\}_{n=1}^{\infty}=\frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \ldots \\
\lim _{n \rightarrow+\infty} \frac{n}{n+2}=\lim _{n \rightarrow+\infty} 1=1 \Longrightarrow \text { so sequence converges to } 1
\end{gathered}
$$

(c)

$$
\begin{gathered}
\left\{\left(-\frac{1}{2}\right)^{n}\right\}_{n=0}^{\infty}=1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \frac{1}{16}, \ldots \\
\lim _{n \rightarrow+\infty} \frac{(-1)^{n}}{2^{n}}=0 \Longrightarrow \text { so the sequence converges to } 0
\end{gathered}
$$

(If you are having trouble with this limit - note that the top is bounded by 1 and -1 but the denominator is growing exponentially.)

$$
\begin{aligned}
& \text { (d) }\left\{(-1)^{n}\right\}_{n=0}^{\infty}=1,-1,1,-1,1, \ldots \\
& \lim _{n \rightarrow+\infty}(-1)^{n} \text { does not exist } \Longrightarrow \text { so the sequence diverges }
\end{aligned}
$$

2. Write out the first six terms of the sequence below (decimal form). Does the sequence converge or diverge?

$$
\begin{aligned}
&\left\{n \sin \left(\frac{\pi}{n}\right)\right\}_{1}^{+\infty}= \sin \pi, 2 \sin (\pi / 2), 3 \sin (\pi / 3), 4 \sin (\pi / 4), 5 \sin (\pi / 5), 6 \sin (\pi / 6), \ldots \\
&=0,2,3 \sqrt{3} / 2,2 \sqrt{2}, \ldots \\
&= 0,2,2.5981,2.8284,2.9389,3, \ldots \\
& \lim _{n \rightarrow+\infty} n \sin (\pi / n)=\lim _{n \rightarrow+\infty} \frac{\sin (\pi / n)}{1 / n}=\lim _{n \rightarrow+\infty} \frac{-\frac{\pi}{n^{2}} \cos \left(\frac{\pi}{n}\right)}{-\frac{1}{n^{2}}} \\
&= \lim _{n \rightarrow+\infty} \pi \cos \left(\frac{\pi}{n}\right)=\pi \cos 0=\pi
\end{aligned}
$$

The sequence converges to π.
3. Write the first five terms of the sequence defined below (decimal form). If the sequence converges, what is its limit?

$$
\begin{gathered}
a_{n+1}=\sqrt{a_{n}+2}, \quad a_{1}=0 \\
\left\{a_{n}\right\}=0, \sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots} \\
\simeq 0,1.4142,1.8478,1.9616,1.9904, \ldots
\end{gathered}
$$

Assume that $\lim _{n \rightarrow+\infty} a_{n}=L$. So $\lim _{n \rightarrow+\infty} a_{n+1}=L$.

$$
L=\lim _{n \rightarrow+\infty} a_{n+1}=\lim _{n \rightarrow+\infty} \sqrt{2+a_{n}}=\sqrt{2+\lim _{n \rightarrow+\infty} a_{n}}=\sqrt{2+L}
$$

Solve $L=\sqrt{2+L}$ for $L \Longrightarrow L=2$.

