Companison Tests -

(Direct) Comparison Test

Assumptions Matter!

For this companion test to work need: 0 ≤ an ≤ bn (two series, both positive, one "bigger than" the other.)

Ex 1st use integral Test to evaluate $\sum_{n=1}^{\infty} \frac{1}{n}$, then use a compansion test to evaluate \(\frac{1}{2n-1} \).

$$\bigcap_{N=1}^{\infty} \frac{1}{N} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

$$\int_{-\infty}^{\infty} \frac{1}{N} dx = \lim_{N \to \infty} |x||_{1}^{\infty} = \infty \quad \Rightarrow \quad \text{series diverges. (albert slowly)}$$
Know
$$\sum_{N=1}^{\infty} \frac{1}{N} = \infty$$

$$\sum_{n=2}^{\infty} \frac{1}{3^{n-1}} = \frac{1}{5} + \frac{1}{8} + \frac{1}{11} + \dots$$

try to match assumptions of Copy Test: Check I < 1 ?

equivi 3n-1 Ch, Falk Compania Test Doesn't Apply.

In order to apply comparise lest need by > 1 cs, 2 11+1

Compare to
$$\frac{1}{n}$$
 $\frac{1}{n} \leq \frac{1}{\sqrt{n+1}}$ $\frac{1}{\sqrt{n+1}}$ $\frac{1$

(1) Know
$$\frac{1}{N} < \frac{1}{\sqrt{N}+1}$$
 (from above)

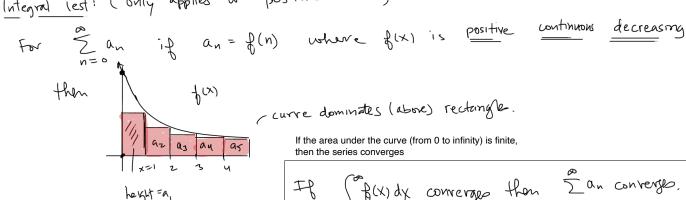
2) I of the divergen So Comptest =)
$$\frac{\infty}{n=1}$$
 In divergen

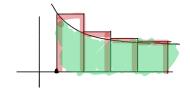
MA16) FRI

Review + Integral & Companison Tests — Series: \(\frac{\pi}{n} \an = \text{lim} \frac{\pi}{n} \an \) Greenatric series: $\sum_{n=0}^{\infty} cr^n = \sum_{n=0}^{\infty} cr^n = \sum_{n=0}^{\infty}$

Divergence Test: If lim an + o then is an diverges

Integral Test: (Only applies to positive series;)





$$\frac{1}{\sqrt{n+3}} = f(n) \text{ where } f(x) = \frac{1}{\sqrt{x+3}}$$

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{x+3}} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{u}} du = \int_{-\infty}^{\infty} \frac{1}{\sqrt{u}} du = \int_{-\infty}^{\infty} \frac{1}{\sqrt{u}} du$$

$$= 2u^{1/2} \Big|_{+}^{\infty}$$
expect this series to diverge
$$= 2u^{1/2} \Big|_{+}^{\infty}$$

Int. Test => series d'irviges

$$2(\infty)^{2} - 2(4)^{1/2}$$
 $\infty - 4 = \infty$

Note: So 1/2 dx = as would not satisfy assumptions of ind test

EX.
$$\int_{-\infty}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{111}$$

Harmonic Apply Int Test $\int_{-\infty}^{\infty} = \int_{-\infty}^{\infty} (n)$ where $\int_{-\infty}^{\infty} \frac{1}{x} dx = \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty$

Companson Tests (Duly applies to positive erres) given two series -Zan Zbn n=0 for all (eventual) n o Łan Łbn 13 \frac{1}{2} bn canverges than \frac{1}{2} an converges of I an diverge then I bu diverge Ex. $\sum_{n=0}^{\infty} \frac{1}{n+3}$ try to apply comparison test; $\frac{1}{n} > \frac{1}{n+3}$ for this comparison to walk, need $\sum_{n=1}^{\infty} converge$, false (int: $\frac{1}{x+3} = \frac{1}{9}(x)$ pos $(\frac{1}{x+3})' = -(x+3)^2 = \frac{-1}{(x+3)^2}$ (i) Sixty dx = $\ln|x+3| = 0$ \Rightarrow diverge EY $\frac{\delta}{\sqrt{n+3}} \frac{1}{\sqrt{n+3}}$ Since $\frac{1}{5}$ $\frac{1}{\sqrt{n+3}}$ diverges TRUE b/c \rightarrow $7 \frac{1}{n} < \frac{1}{\sqrt{n+3}} < n$ $7 \frac{1}{n} < \frac{1}{\sqrt{n+3}} < n$ $7 \frac{1}{\sqrt{n+3}} < n$ $8 \frac{1}{\sqrt{n+3}} < n$ $1 \frac{1}{\sqrt$ eventually the holds i.e, true + x>xo