$$\begin{array}{c} \text{Mark} (b) \quad \text{Mar} 5 - \text{Mar} 1 & 7 - \frac{1}{5} \quad (L \ 10 \\ \text{Warm} qr: \\ (L \ Ranew qrime) \quad (mproper \ Integrals(7)) \\ (2 \ Recall rintegration = Accumulation (Repeated Add(thic)) \\ (3 \ Recall rintegration = Accumulation (Repeated Add(thic)) \\ (4 \ Recall rintegration = Accumulation (Repeated Add(thic)) \\ (5 \ Recall rintegration = Accumulation (Repeated Add(thic)) \\ (5 \ Recall rintegrated as we gats from vertical to vertical recall rintegrated as we pass from vertical to vertical t$$

Sequence: an ordered list of numbers 1 Main Question: Converge
eg. 1, 2,3 (Quint) Diverge

$$fan3$$
 w/ $an = n$ w) $n \in \Sigma_{1,2,3}$
 $fan3$ b $n = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $gbn3$ $bn = n^2$ w) $n \in IN$ natural numbers
 $fab n = n^2$ $fab n =$

Ratures of adjacent terms into terms
$$a_1 = 1 + 0$$

 $a_1 = 1 + 0$
 $a_1 = 1$
 $a_2 = a_1 + a_3$
 $a_2 = a_1 + a_3$
 $a_3 = 0$

How to tell of a sequences converges? Note: what does it actually mean to "converge" a sequence $\{a,n\}$ converges to an number L, if you can go out far enough in the sequence and get arbitrarily close to L $a_n-L| < a + f + n > M + free$ Some large number M, (depth level) $<math>a_n + b_n + b_n + b_n$

How to tell convergence / divergence? - look to the function (continuous) that describes your sequence, & use Calci I Tools (limits & L'Hopital's Rule)

Existing
$$a_n = \frac{1}{n}$$
 $a_n = \frac{1}{n}$ a_n

Eiji Ueda/Shutterstock